//
you're reading...

Biology

A cod by any other name would taste as sweet?

 

Source

Tagliavia, M., Nicosia, A., Salamone, M., Biondo, G., Bennici, C.D., Mazzola, S., and Cuttitta, A. 2016.  “Development of a fast DNA extraction method for sea food and marine species identification”. Food Chemistry 203: 375-378. doi:10.1016/j.foodchem.2016.02.095                               

What’s in a name?

We all want to know exactly what it is we’re eating – it’s a part of being a responsible, informed consumer.  The precise nutritional content of food species varies, allergies may be species- or group-specific, and religious reasons may restrict the consumption of certain groups.  If a species is endangered or highly at risk, some buyers may turn to substitutes to give the populations time and room to rebound.  My dad, for example, has joined many other consumers who refuse to purchase Bluefin tuna, as it is currently at risk of extinction due to overfishing.  These concerns make it very important for food to be properly identified and labelled.

Seafood is one of the most frequently mislabeled foods available, for a number of reasons.  Many fish species share similar textures, and it can be difficult to tell species apart based on texture or taste (Figure 1).  Most commercially-available seafood is offered in a processed form that removes identifying anatomical characteristics.  For example, fish are often filleted, sliced, or beheaded before it is sold at a grocery store or market.  Colors can be added or changed, further obscuring identity.  Local fish markets, where the whole fish was presented for verification before any processing, are largely dying out.  They are a vestige, a remnant of times gone by.  It’s a sad truth for me to admit, since I grew up on Boston’s North Shore, one of the last holdouts of the local fisherman.  I spent a lot of time on the water and was acutely aware of the nautical community – which was, in the case of Marblehead and Gloucester particularly, still made up of relatively equal parts of pleasure cruisers and working fishing trawlers or lobsterboats.  The old salt sitting at the diner near the dock was a stalwart of my childhood, but he’s being driven out of business by major fisheries.  In the face of the modern lifestyle, where seafood in particular is difficult to identify visually, it’s increasingly important that we find a fast, easy, cheap, and reliable way to tell apart the fish, mollusk, and crustacean species that we eat.

3.2 1

Figure 1: What am I eating? These are all marketed as different types of seafood, but they look startlingly similar. How can we tell apart different species?

 

DNA to the rescue!

Researchers have been using DNA to identify different species for decades.  Many single-celled organisms like bacteria and certain fungi are only known through their genetic sequence – we’ve never actually seen them, but because they’ve left their genetic code in the soil, we know that they exist.  Every species has a unique genetic signature, like a fingerprint, only even more specific.  Of course, there is always some variation among individuals of a particular species, but species themselves are largely similar enough to be reliably grouped using genetic fingerprinting.

This process works using a combination of molecular techniques.  First, DNA must be extracted from a tissue sample into a solution.  This DNA is then “amplified” – copied many times to increase the amount of DNA present in the solution – using a procedure called the polymerase chain reaction (Figure 2).  This technique uses heat to break up the two chains of DNA.  The researcher adds in enzymes and nucleotides that are used to synthesize two new strands with the original two as a template. This process is repeated multiple times, doubling the amount of DNA present at each step. DNA is then cut into small fragments using enzymes which break DNA at specific code sequences. The result is a mix of shorter DNA segments which can be separated using another technique called gel electrophoresis. Basically, this process uses electricity to pull DNA fragments through a semi-porous gel. Because DNA is slightly negatively charged, the molecules are attracted to the positively charged end of the gel. Smaller DNA segments move faster through the gel, and are found closer to the positive end of the gel. The researcher can then visualize the gel using ultraviolet light to find where these segments are. Each individual will have a unique pattern of segments specific to their species! This genetic fingerprinting technique is used in a variety of ways, including paternity tests and identifying crime suspects based on blood, hair, or skin cells found at the crime scene.

Traditional DNA analyses of seafood can be difficult, since DNA may degrade during preparation processes such as smoking, cooking, or salt-curing. These analyses can also be time consuming and cost prohibitive– they rely on long incubation steps to amplify this degraded DNA, and even with these long steps there’s no way to reliably extract enough DNA to amplify for fingerprinting analysis. This paper proposes a simple, reliable, and fast method for extracting DNA from seafood and tests it on a variety of species that have been processed in several different ways.

3.2 2

Figure 2: The basic steps of the polymerase chain reaction. Using heat to manipulate the state of DNA, we can amplify DNA many times over. In this diagram, the green chains represent the original DNA molecule; blue/red chains represent the newly produced DNA molecules. This procedure is repeated dozens of times to produce lots and lots of DNA molecules that all share the sequence of the original DNA molecule.

 

3.2 3b 3.2 3a

Figure 3: The results of gel electrophoresis on each of the samples extracted with the new procedure.  You can see that all of these different kinds of tissue samples produced bright, clear bands of DNA (which indicates that there’s a lot of DNA in the sample) with minimal smearing (which would indicate degraded DNA).  In each gel, lane M represents a DNA ladder that has been included to provide information about the length of the sequence found at each band.

 

Extracting a bigger fraction using a simpler procedure

Most DNA extraction procedures call for the tissue sample to be physically broken up by cutting or crushing it, and then incubating the sample over a long period of time. The procedure used in this paper moves straight to DNA extraction using a sample that has been broken up chemically through a process called lysis. DNA amplification of the lysed sample occurred immediately afterwards, with no further chemical or physical processing or incubation period. The authors attempted to amplify DNA from the following processed tissue samples: smoked salmon, tuna, and swordfish; and tuna and anchovies packed in oil. They also amplified DNA from a variety of fish and mollusk tissue samples that were not processed for consumption. They successfully amplified DNA from each of these tissue samples (Figure 3). Bright bands mean lots of DNA from each sample!  Fainter bands would mean that the sample does not have a lot of DNA in it (Figure 4). Implementing this quick extraction procedure will allow us to reliably gather enough DNA for genetic fingerprinting of seafood products, thereby assuring the identity of seafood products.

 3

Figure 4: This gel shows two very faint bands.  It would be difficult to run a genetic fingerprinting analysis on these samples!

Questions?  Comments?  Please sound off below!  I’d love to hear from you :)

 

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 weeks ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 2 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 2 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 4 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 6 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 7 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 7 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 8 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 8 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 9 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 9 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 10 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com