//
you're reading...

Pollution

Cold Water Conundrum: How does unusually cold water affect fish growth?

Paper: Michie, Laura E., et al. “Effects of suboptimal temperatures on larval and juvenile development and otolith morphology in three freshwater fishes: implications for cold water pollution in rivers.” Environmental Biology of Fishes (2020): 1-14. https://doi.org/10.1007/s10641-020-01041-z

An illustration of how differences in temperature occur in lakes. The top layer (I) of the lake gets heated by the sun and generally doesn’t mix with the bottom layer (III), which stays relatively cool as a result. Image by Mbrookings19 via Wikimedia Commons.

A story of cold water pollution

Anthropogenic, or human caused, climate change is increasing water temperatures throughout the world. These warmer waters can impact the migration of marine animals, and affect their growth, reproduction, and survival. However, human impacts can also make water much colder than usual, and this can have equally devastating consequences for organisms. At Australia’s Burrendong Dam, for example, very cold water from Burrendong Lake’s bottom is frequently released into the surrounding river system (causing what is called cold pollution, or cold water pollution) to prevent dam flooding. This input can decrease water temperature up to 16℃ (up to 60℉!), which likely has a significant effect on the fishes that inhabit these rivers. In particular, newborn or juvenile fishes that have experienced cold pollution can have their growth stunted. These fishes become significantly smaller than adult fishes who have not experienced cold water pollution, making it harder to obtain food, reproduce, and avoid predators. This trend begs the question – are fish species that are currently threatened in the wild (meaning likely to soon become endangered) affected by cold water pollution more than non-threatened species? If so, could cold pollution be a reason these species are threatened, and should conservation efforts focus on combating it? Researchers based at the University of Technology Sydney sought to study the rivers surrounding the Burrendong Dam to answer this question.

Collecting and cooling fish

The Burrendong Dam in Australia. When cold water from deep in Burrendong Lake, present behind the dam, flows into the subsequent river systems, cold water pollution can occur. Image from Needpix.com.

To compare the effects of cold water pollution on threatened and non-threatened fish species near Burrendong Dam, two threatened fish species, silver perch and trout cod, were compared with golden perch, a non-threatened species. All fishes were 31 days old at the start of the experiment and were acclimated to one of four temperature conditions – 13℃, 16℃, 20℃, and 24℃. These fishes typically grow in waters around 20℃, but could also experience all the experimental temperatures in their native rivers. Fishes were exposed to the temperature treatments for 30 days, and then measured and weighed. Special attention was also paid to the shape of the fish.

Does cold water pollution affect fish growth?

Overall, all of the fishes were much smaller at 13℃ and 16℃ compared to 20℃ and 24℃. Silver perch and trout cod (the threatened fishes) raised in the warmest waters were nearly double the length of the fishes in the coolest waters. For silver and golden perch, fishes at 13°C barely grew at all over the 30 day period, and the length of trout cod only increased by about 25%. The same pattern held for weight measurements, with silver perch and trout cod being almost 10x heavier after 30 days at 24℃ than at 13℃. There were also clear trends in shape, as silver perch and trout cod were shaped very differently in each of the temperature categories, while the golden perch were a bit more similar throughout the temperature range. These shape differences were primarily in areas of head and body width, with fish raised in cooler temperatures having smaller mouths and thinner bodies overall.

An adult silver perch, one of the threatened species analyzed in this study. Adults can be 30-40cm long, while the juvenile silver perch in this study ranged from less than 10mm when raised at 13°C to 50mm at 24°C. While the fish studied were not done growing, this stark difference between treatments highlights how different these fish would look at adult ages. Image by Mitch Ames via Wikimedia Commons.

How do these differences impact threatened fish species?

It is clear from these results that the threatened species (silver perch and trout cod) are more negatively affected by cold water pollution than golden perch, a non-threatened species. While this does not prove that cold water pollution is responsible for the decline of silver perch and trout cod, it is likely a part of the problem. By stunting fish growth, cold water pollution creates fishes that are smaller and thinner than normal for an extended period of their lives. Since smaller fishes cannot swim as quickly as larger fishes, they are easier targets for predators. By leaving fishes with smaller mouths that aren’t able to consume their normal variety of prey, cold water may also cause fishes to starve and/or be malnourished. Additionally, a smaller fish may not be a viable candidate for a mate, harming reproduction.

Overall, it is clear that cold water pollution can negatively impact fishes in many ways, and humans should seek solutions to combat this issue. By finding a way to manage the temperature of water that is released from lakes and dam systems, or by avoiding this process altogether, we can save current and future generations of fishes from stunted growth, and perhaps even extinction.

Discussion

One Response to “Cold Water Conundrum: How does unusually cold water affect fish growth?”

  1. I enjoyed reading your article, Francesca. I live in northern Michigan, USA. Home to cold rivers and the Great Lakes and we are very concerned about global warming’s effect on our native trout. I never thought about the cold water effects on warm water fish since we see very cold water every winter.
    Nice article and good luck with your career.

    Posted by Frank Simkins | December 23, 2020, 10:44 am

Leave a Comment on Frank Simkins Click here to cancel reply

Instagram

  • by oceanbites 2 days ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 1 month ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 4 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 5 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 5 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 6 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 6 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 7 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 7 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 8 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 8 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 8 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
WP2Social Auto Publish Powered By : XYZScripts.com