//
you're reading...

Chemistry

From Your Sofa to the Sea

Paper: Castro-Jiménez, J.; Berrojalbiz, N.; Pizarro, M.; Dachs, J. Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black Seas Atmosphere. Environ. Sci. Technol. 2014. DOI: 10.1021/es405337g

Molecular structure of a common OPE called TDCPP, or "chlorinated Tris". (source: toxipedia.org)

Molecular structure of a common OPE called TDCPP, or “chlorinated Tris”. (source: toxipedia.org)

They’re in couches, carpets, vehicle upholstery, seat cushions, children’s toys, electrical equipment, and myriad other products: organophosphate esters (OPEs) are widely used as flame retardants (intended to slow the ignitability of furniture and textiles) and plasticizers (used to make plastics more malleable). OPEs are great for these applications because they’re very stable – they don’t break down or thermally degrade easily, so they can slow combustion. Unfortunately, their stability also means they can persist and bioaccumulate after they’re released into the environment. This is particularly worrying because some OPEs are carcinogenic and neurotoxic.

The usage of OPEs has increased in recent years, especially since another group of persistent flame retardants, PBDEs, were banned by the Stockholm Convention in 2009. Since then, studies have reported that OPEs are ubiquitous in the atmosphere – they’ve been found all over the world, even in remote locations. However, concentrations of OPEs had never been measured over the Mediterranean and Black Seas, a densely populated region where high concentrations of other pollutants have been measured.

The atmosphere is a very important source of pollution to semi-enclosed seas and lakes because many compounds can travel long distances in the air and deposit in relatively remote surface waters.  To investigate whether OPEs are entering the Mediterranean and Black Seas from the air, and whether they might negatively impact organisms in the water, scientists measured several common OPEs in the atmosphere over the seas.

The Mediterranean and Black Seas

The Mediterranean and Black Seas

The Mediterranean: a beautiful but threatened environment

The Mediterranean: a beautiful but threatened environment

 

 

 

 

 

 

 

Methods

Scientists from Barcelona, Spain collected samples of atmospheric aerosol during two cruises aboard the R/V Garcia del Cid. The term aerosol refers to tiny solid particles in air that can travel with the wind for long periods of time before depositing onto land or water. Large hydrophobic molecules like OPEs are often released into the atmosphere as individual molecules but later stick onto or absorb into these aerosol particles and accumulate there, much like they stick to sediments and sink to the seafloor. When the aerosol is deposited in the water, it brings pollutants along with it. Scientists have identified this process, called dry deposition, as a major source of pollutants in water bodies like the Mediterranean and the Great Lakes, as well as the open ocean.

The R/V Garcia del Cid (source: jcastrojimenez.net)

The R/V Garcia del Cid (source: jcastrojimenez.net)

Results

The authors found that several OPEs were widespread in the study region – 8 different compounds were found in more than half of the samples. The concentrations of three chlorinated OPEs, known to be the most toxic of the group, are shown in Figure 1.

Figure 1: Distributions of the three most toxic OPEs throughout the Mediterranean and Black Seas.

Figure 1: Distributions of the three most toxic OPEs throughout the Mediterranean and Black Seas.

Researchers used sophisticated atmospheric modeling techniques to calculate “back trajectories” (paths showing where air masses came from before they arrived at the sampling site). Using this method, they determined that air at the sites with highest concentrations seemed to originate from the Aegean Sea and Istanbul as well as Alexandria, indicating that these areas could be significant sources of pollution to the seas.

How much of these compounds are entering the seas?

To get an idea of the total amount of OPEs that could be deposited into the seas in a year, the authors used their measured concentrations to calculate input fluxes. They estimated that the open waters of the Mediterranean receive 13 – 260 tons of OPEs per year, while the Black Sea receives 50 – 170 tons of OPEs. Often in oceanography, scientists have to make these wide-range ballpark estimates to get an idea of how fluxes of compounds could affect natural processes over vast areas.

OPEs as a source of nutrients

OPEs are unique compared to other flame retardants because they contain phosphorous, which is an important nutrient for phytoplankton and microbes. In many cases, phosphorous is a limiting nutrient which means that the amount of bioavailable (able to be broken down and used by organisms) phosphorous dictates the amount of life that can be supported. Scientists are especially concerned with nutrients added by human activities because it can lead to problems like eutrophication, which leads to algal blooms and hypoxia, and disrupts the natural cycle of marine carbon fixation and storage.

While the above calculations are just approximations based on initial measurements, scientists can use these numbers to get some idea of whether OPE deposition could significantly affect marine life in the Mediterranean and Black Seas. The authors theorize that OPEs could indeed be a significant source of phosphorous to marine life, in which case deposition of OPEs could perturb the marine carbon cycle by encouraging increased microbial activity. At this time, however, scientists don’t know whether OPEs are bioavailable to microbes.

Significance

This study provided the first measurements of OPE flame retardants in this highly impacted region. It is crucial that researchers gather data on levels of pollutants like OPEs that are currently being used in high volumes so that we can better understand where they end up in the environment and what regions are most likely to be impacted. Now that measurements for this region exist, scientists can compare these “baseline” concentrations with results from future cruises to find out whether levels are decreasing or increasing over time in response to changing usage patterns or regulation of OPEs.

 

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 5 days ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 weeks ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 weeks ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 3 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 3 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 4 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 4 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 5 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 5 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 6 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 6 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 7 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 7 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
  • by oceanbites 8 months ago
    Today is the day of  #shutdownacademia  and  #shutdownstem  and many of us at the Oceanbites team are taking the day to plan solid actions for how we can make our organization and the institutions we work at a better place
  • by oceanbites 8 months ago
    Black lives matter. The recent murders of Ahmaud Arbery, Breonna Taylor, and George Floyd have once again brought to light the racism in our country. All of us at Oceanbites stand with our Black colleagues, friends, readers, and family. The
WP2Social Auto Publish Powered By : XYZScripts.com