//
you're reading...

Climate Change

A new king (crab) of the Antarctic

The paper:

Aronson, R.B., Smith, K.E., Vos, S.C., McClintock, J.B., Amsler, M.O., Moksnes, P.-O., Ellis, D.S., Kaeli, J., Singh, H., Bailey, J.W., Schiferl, J.C., van Woesik, R., Martin, M.A., Steffel, B. V., Deal, M.E., Lazarus, S.M., Havenhand, J.N., Swalethorp, R., Kjellerup, S., Thatje, S., 2015. No barrier to emergence of bathyal king crabs on the Antarctic shelf. Proc. Natl. Acad. Sci. 201513962. doi:10.1073/pnas.1513962112

Introduction

Changing climate makes some habitats unsuitable for its residents while also creating opportunities for other species to comfortably move into the neighborhood. Animals at the poles run out of options, as there is no further North or South to go in search of colder temperatures. This study investigates the emergence of new predators in the Antarctic, specifically durophagous king crabs (Lithodidae). Durophagy, or bone breaking, refers to predators that consume hard-shelled prey such as crustaceans, echinoderms and molluscs. No durophagous predators have made the shallow waters of the Antarctic home in as long as tens of millions of years. Few bone breakers live in the frigid Antarctic nearshore waters, so resident species do not often face predators and so lack natural defenses. New predators could seriously mix up the food web and further threaten the ability of the native Antarctic animals to resist extinction.

 

Study site, SeaSled, and images from the seafloor.

Fig 1. Study site, SeaSled, and images from the seafloor.

 

The Study

Methods

Researchers conducted a photographic survey off the western Antarctic Peninsula in 2010 (Figure 1) and a trapping study in 2015 to identify the abundance and species of king crabs. A research ship pulled an underwater camera-vehicle called SeaSled along eight transects. The camera hovers on average three meters above the seafloor. The work produced 38,018 pairs of overlapping images!

Results

Overall the king crab abundance was greater at greater depths. King crabs are known to live at the greater depths already, but this study shows the population’s movement towards shallower depths. At this location the shallow waters are colder than the deeper water. King crabs were seen in waters down to 0.43 C (their physiological limit is 0.4 C). Crabs were seen in precopulatory embraces (the male crab holding the female crab before mating begins) as well as at different age classes (juvenile and adult) suggesting a viable population exists in the area.

Prey species, including brittle stars, sea stars and snails, were observed as well. The prey species showed lower densities at depths where king crabs are present indicating the predatory crabs may be lowering their numbers (Figure 2). However, though this may be bad news for the prey species the king crabs feed on a wide variety of prey and are likely to find plenty to eat in their new Antarctic habitats wherever they go.

Figure 2. Densities of invertebrates. (A) Mean temperature in 50-m depth increments over the depth range sampled. Vertical bars represent ranges. (B) Density of P. birsteini with depth, over the depth range for which accurate estimates were possible.

Figure 2. Densities of invertebrates. (A) Mean temperature in 50-m depth increments over the depth range sampled. Vertical bars represent ranges. (B) Density of king crabs with depth. (C-F) Densities of potential prey as a function of depth.

King crab growth could also be restricted as they encounter predators of their own such as the Antarctic toothfish, skates, octopuses, or seals. The researchers used the photos to quantify evidence of predation through counting missing legs. Missing or damaged limbs were seen in 8.9% of observed king crabs, a number much lower than what is seen in crustaceans such as the blue crab in temperate climates (one estimate at 23%). This suggests predation may not be much of a concern for king crabs, and not much of a help to keep the population in check.

Significance

Climate change brings layers of problems to the ocean- warming, sea level rise, increased acidity and changing ecosystem composition and altering the food web. Sea surface temperatures in the Antarctic summers have risen 1.5 C over the last 50 years, much faster than the global temperature change. What may seem like a small change in temperature is enough to open up a suitable habitat for new animals such as king crabs. With few predators evolved to eat king crabs and an abundance of prey we are witnessing a changing food web.

Different species are already showing different responses to changing climate and this study shows us an example of how there will be winners and some losers as things heat up. Some animals will move to newly suitable habitat but others will be pushed to extinction. Populations will die out as they are pushed to their limits and increasing predation pressure may be an added threat.

Discussion

Trackbacks/Pingbacks

  1. […] the structure and distribution of marine ecosystems, redefining where marine species like fish, crabs, and lobsters are able to live, and causing sea ice to melt. Ocean acidification, which is caused […]

Post a Comment

Instagram

  • by oceanbites 3 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 2 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 9 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com