//
you're reading...

Climate Change

Double Whammy: Losing sea ice may be worse than we thought

Article: Parmentier, Frans‐Jan W., Wenxin Zhang, Yanjiao Mi, Xudong Zhu, Jacobus Huissteden, Daniel J. Hayes, Qianlai Zhuang, Torben R. Christensen, and A. David McGuire. “Rising methane emissions from northern wetlands associated with sea ice decline.” Geophysical Research Letters (2015). doi:10.1002/2015GL065013

Feedback is not always positive

One of the greatest examples of climate change is the stark decrease in Arctic sea ice. When sea ice melts, it causes a climate feedback. Let me explain. That more-than-normal sea ice melt is a result of warming temperatures. However, when that sea ice disappears, it changes the regional albedo, or reflectivity of the land type. Sea ice is white, which generally causes a lot of solar irradiance to be reflected, while the underlying ocean is darker and typically absorbs more solar energy. In other words, as sea ice melts, more heat energy is absorbed by the Arctic region, ultimately making the Arctic water even warmer (Figure 1).

Figure 1: From Parmentier et al. 2015, this schematic illustrates how reductions in sea ice can lead to more methane emissions in the northern wetlands.

Figure 1: From Parmentier et al. 2015, this schematic illustrates how reductions in sea ice can lead to more methane emissions in the northern wetlands.

Unfortunately, sea ice melting may be a double whammy to warming in the Arctic. Parmentier et al. (2015) set out to test a hypothesis that would link disappearing sea ice to increased methane emissions from nearby terrestrial wetlands. Microbes in wetland soils produce methane through an anaerobic respiration process called methanogenesis. These microbes live in soils with no oxygen, so when they breathe, they produce methane instead of carbon dioxide. Methane is a powerful greenhouse gas and methane production increases when temperatures are warmer. Think about your own breathing patterns; after a light jog, you are likely to breathe heavier when it’s the dead of summer and lighter after lovely fall day!

Thus, is it possible that the warming associated with losing sea ice also causes more methane to be emitted from Arctic wetlands by intensifying microbial “breathing”?

The approach: Satellites and Models allow us to be “everywhere”

Figure 2: The top color bar in dark blue depicts the decade long decrease in sea ice extent. The bottom color bar (hot to cold) depicts the detrended linear correlation between sea ice area and methane emissions. A strong negative correlation (red) indicts that more methane is emitted where sea ice decreases.

Figure 2: The top color bar in dark blue depicts the decade long decrease in sea ice extent. The bottom color bar (hot to cold) depicts the detrended linear correlation between sea ice area and methane emissions. A strong negative correlation (red) indicts that more methane is emitted where sea ice decreases.

Arctic sea ice coverage and declines were measured using satellite observations from 1991-2010 and methane emissions were estimated using three different models (LPJ-GUESS, Peatland-UV, and TEM6) from 1981-2010 (Figure 2). The use of satellites and multiple models allowed for a large region to be investigated. Scientists cannot be physically present everywhere, so we use helpful tools like models to analyze more data than humanly possible!

The investigators in this study wanted to understand if A) the melting sea ice in the Arctic lead to increased methane emissions in nearby wetlands, or B) if that same warming that initially caused the ice to melt is also causing more methane to be produced. The best way to separate the two: distance! If enhanced methane was only being emitted near melting sea ice, then their hypothesis would be wrong. But if the northern wetland region were emitting more methane, despite distance from melting ice, then their hypothesis may hold true.

Parmentier et al. (2015), used grid cells (small units of area, 0.5° latitude by 0.5° longitude) to correlate sea ice content with modeled methane emissions. These Arctic grid cells were fitted with a linear correlation by removing the distance between sea ice and wetlands, which sets the mean to 0. This prevents “false” or coincidental trends from being observed. This detrending set the correlations on a scale from -1 and +1. A more negative correlation (near -1) would support the notion that melting sea ice results in increased emissions. A 0 would indicate no trend and a more positive correlation (+1) would suggest methane emissions are not correlated with sea ice loss.

What did they find?

From May to October, there was a clear negative correlation suggesting that decreasing sea ice increased methane emissions from the northern wetlands. It is reasonable to think that as climate change progresses, and sea ice decreases further, this feedback could promote even more methane emissions. This feedback (an endless spiral!) could in fact increase atmospheric temperatures and further decrease sea ice content.

Figure 3: An Arctic wetland full bloom in the summer. Credit

Figure 3: An Arctic wetland full bloom in the summer. Credit

This analysis predicted that an additional 1.7 Tg of methane per year from 2005 to 2010 was emitted as a result of this feedback loop, with an uncertainty of ±0.4 to 4.1 Tg of methane per year. This study was only able to assess the magnitude of methane production, and not the resulted warming.

Surprisingly, a few terrestrial regions, like the Canadian Archipelago, saw a decrease in methane. This region has very few wetlands, suggesting that the soils actually uptake this greenhouse gas. Clearly there is an important feedback between wetlands and sea ice.

The researchers suggest investigating this connection between sea ice and wetlands further. For example, most methane measurements used to validate the models are from the summer months while some of the strongest correlations where observed in the spring and fall.

Overall, methane has been increasing in the Arctic. While thawing permafrost is one potential cause, this study offers another contributing factor. The ocean and land are more connected than you may think!

Significance

Climate change comes in many different forms. This study used satellite measurements of sea ice decline and modeled methane emissions from land to demonstrate just how interconnected the land and sea are. Decreases in sea ice not only lower the albedo (making the regional temperature warmer), but also potentially increases methane production in Arctic wetlands. These processes ultimately make the Arctic region even warmer. Broadly, this climate feedback loop decreases sea ice even more, which reduces vital arctic habitat (the poor polar bears!) and creates more open water all year long (open shipping lanes)!

Discussion

Trackbacks/Pingbacks

  1. […] have long known that receding Arctic sea-ice is a major consequence of climate change. Even parts of the Arctic icecap that were […]

  2. […] heat will be brought to the surface by storm energy is increased, accelerating ice melt in a positive feedback loop.  As ice melts and waters warm, sea-level rise puts coastal communities at risk, inundating […]

  3. […] heat will be brought to the surface by storm energy is increased, accelerating ice melt in a positive feedback loop.  As ice melts and waters warm, sea-level rise puts coastal communities at risk, inundating […]

  4. […] deeper heat will be brought to the surface by storm energy, further accelerating ice melt in a positive feedback loop.  As ice melts and waters warm, sea-level rise puts coastal communities at risk, inundating […]

Post a Comment

Instagram

  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 7 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 10 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com