//
you're reading...

Biology

Frozen Food: how ice algae support Arctic ecosystems

 

 

Article: Kohlbach, Doreen, et al. “The importance of ice algae‐produced carbon in the central Arctic Ocean ecosystem: Food web relationships revealed by lipid and stable isotope analyses.” Limnology and Oceanography 61.6 (2016): 2027-2044.

Background:

A top-down look of the Arctic doesn’t exactly stir images of a thriving and diverse habitat. This bird’s eye view makes the Arctic look like a vast, cold, snow and ice covered desert. But underneath that ice lies an impressive ecosystem, teeming with benthic (or sea floor dwelling) invertebrates, large fish, and many marine mammals (Fig. 1). Like other cold water systems, much of the support for the Arctic ecosystem comes from phytoplankton, microscopic algae that harness sunlight and carbon dioxide to create usable energy. But there is a potentially unheralded source of energy for this ecosystem coming from ice algae.

Fig. 2: Under all that ice, the Arctic is teeming with life, including many marine invertebrates like crabs, sea stars, and worms (Photo: NOAA).

Fig. 1: Under all that ice, the Arctic is teeming with life, including many marine invertebrates like crabs, sea stars, and worms (Photo: NOAA).

 

Ice algae is composed of diatoms (small primary producers) in addition to phytoplankton (Fig. 2). Diatoms and phytoplankton would be found in the water columns in warmer climates, but due to the fact that the Arctic is ice covered, some of the algae get trapped within the ice. The algae then grows in the pockets and channels found in the ice (Fig. 3). Harnessing the light that penetrates the ice, allows the algae to grow and flourish.

 

Fig. 2: Ice algae can be seen growing on, and in, ice, turning the ice brown (Photo: Live Science).

Fig. 2: Ice algae can be seen growing on, and in, ice, turning the ice brown (Photo: Live Science).

Fig. 4: Microscopic phytoplankton contribute to the ice algae community. Here they can bee seen growing in the spaces between the ice (Photo: Live Science).

Fig. 4: Microscopic phytoplankton contribute to the ice algae community. Here they can bee seen growing in the spaces between the ice (Photo: Live Science).

 

 

 

 

 

 

 

 

Zooplankton (small marine animals; Fig. 4) eat ice algae in high quantities and are in turn eaten by larger organisms like fish, spreading the energy through the food web. When Arctic waters get warmer in the spring and some of the ice begins to melt, ice algae is released into the water where other creatures can start eating it, too. While it is known that ice algae is important in polar ecosystems, its role as a food source is even more important to understand since climate change and global warming are resulting in the decline of ice cover. Therefore, researchers in Germany recently set out to determine just how big of a role ice algae has in supporting the Arctic ecosystem.

 

Fig. 4: Zooplankton, like these copepods, are an important part of the food web. These small animals will eat phytoplankton and ice algae, helping to transfer energy to the rest of the of the food web (Photo: The Economist).

Fig. 4: Zooplankton, like these copepods, are an important part of the food web. These small animals will eat phytoplankton and ice algae, helping to transfer energy to the rest of the of the food web (Photo: The Economist).

The Study:

What makes this study possible is the fact that growing in ice results in ice algae having a different make-up than algae in the water. Being isolated in ice means these algae live in a carbon-limited environment, which results in different isotopic ratios and different fatty acids (FAs). When small zooplankton eat algae, one can go back and determine their diet by looking at isotopes and FAs. By testing the chemical make-up of Arctic zooplankton, researchers aimed to find out which food sources were most important, and if ice algae played a major role in the diets.

Researchers sampled 10 sites across an area of the Arctic Ocean seasonally covered by sea ice (Fig. 5). At each site scientists took ice cores in order to determine what species of ice algae were present along with their isotope and FA composition. Water samples were taken to determine what species of free-floating or swimming algae (pelagic algae) were present and what their isotope and FA make-ups were. Finally, tows were done at each site to sample the zooplankton community and find out what they were eating!

Fig. 5: This map shows where researchers sampled. Each letter represents a sampling site.

Fig. 5: This map shows where researchers sampled. Each letter represents a sampling site.

Fig. 6: Researchers were able to determine differences in the FA composition (x-axis, different isotopic markers listed) between pelagic algae (gray bars) and ice algae (white bars).

Fig. 6: Researchers were able to determine differences in the FA composition (x-axis, different isotopic markers listed) between pelagic algae (gray bars) and ice algae (white bars).

 

 

 

 

 

 

 

 

 

After running the algae through isotopic analysis, done with some fancy machinery, researchers were able to flag which FA differed between ice algae and the pelagic algae (Fig. 6). Running similar analysis on the captured zooplankton would reveal what these animals were eating. It was found that dominant copepods, Calanus species (Fig. 7), exhibited a mixed diet of pelagic and ice algae, whereas amphipods (Fig. 8) relied on ice algae for the majority (60-90% based on the species) of their food. It was unsurprising that these amphipods received that much carbon from ice algae as they live on and in the ice. But what was surprising was that other zooplankton that live at greater depths and away from the ice, more closely resembled the copepods by getting 20-50% of their carbon from the ice algae.

Fig. 7: One of the common copepods found in this study was Calanus glacialis. This species relied on ice algae for almost 50% of it's diet.

Fig. 7: One of the common copepods found in this study was Calanus glacialis. This species relied on ice algae for almost 50% of it’s diet.

Fig. 8: The amphipod Gammarus wilkitzkii lives in and on the ice, so it was no surprise that ice algae made up 90% of it's diet.

Fig. 8: The amphipod Gammarus wilkitzkii lives in and on the ice, so it was no surprise that ice algae made up 90% of it’s diet.

 

 

 

 

 

 

 

 

 

 

 

The Significance:

By determining where zooplankton’s primary carbon sources, researchers were able to better understand the role and importance of ice algae in supporting Arctic ecosystems. They found that not only did ice algae allow ice-associated creatures to thrive, but that it contributed up to 50% of diets for creatures found elsewhere, so the impact of ice algae is widespread. But as the planet, and especially the Arctic, warms up, ice will disappear. No ice, no ice algae. Given this ecosystem houses commercially important fisheries and a diversity of marine mammals, the importance of ice algae hits closer to home, doesn’t it? It will be important to monitor how this ecosystem shifts through warming, and hopefully by paying attention to the species at the base of the food web, we’ll be better prepared as the ice disappears.

 

Discussion

One Response to “Frozen Food: how ice algae support Arctic ecosystems”

  1. Fantastic information Gordon! Thank you! I am part of a group we call Parvati.org who are working to establish a Marine Arctic Peace Sanctuary (MAPS) to include all of the waters north of the Arctic Circle. If interested we could use a hand letting the public know about this important move to keep the planet cool!

    Posted by Uttama Anderson | December 19, 2016, 8:58 pm

Post a Comment

Instagram

  • by oceanbites 2 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com