//
you're reading...

Atmospheric Science

MARPOL-ling in the Right Direction

Posted by Steven Koch

Research article: Zetterdahl, M., Jana Moldanov, J., Xiangyu Pei, X., Pathak, R. K., Demirdjian, B. (2016). Impact of the 0.1% fuel sulfur content limit in SECA on particle and gaseous emissions from marine vessels. Elseveir, Atmospheric Environment, 145 (2016) 338-345. doi: http://dx.doi.org/10.1016/j.atmosenv.2016.09.022

Background

Air pollution is an important issue that adversely affects the entirety of the global population causing severe health complications, forcing wildlife to change habitats, and contributing to climate change.  The continued heavy reliance on burning  fossil fuels serves as the main culprit driving air pollution. The bright side is that not all of the news is negative. I have found some revolutionary research on emissions control measures which is sure to provide optimistic insight on current international endeavors combating climate change. The basis of this fantastic revelation originates from a recent publication evaluating the impact of mandatory emissions reduction strategies prescribed by the International Convention for the Prevention of Pollution from Ships (MARPOL).

International Action

MARPOL was developed by the International Maritime Organization (IMO), the regulatory body responsible for establishing environmental, safety, and security regulations for the shipping industry. MARPOL prescribes specific preventative measures addressing air, oil, garbage, sewage, and harmful substances pollution to 154 signatory nations, i.e., nations which have accepted and agreed to follow the MARPOL regulations, operating vessels globally. Air pollution, which is Annex VI of MARPOL, outlines the proactive emissions reduction strategies as well as established sulfur emission control areas (SECAs) in several parts of the world. As of Jan 1, 2015, vessels subject to the regulations of Annex VI of MARPOL (Figure 1) were required to burn low sulfur fuel with a 0.1% sulfur content when transiting within a SECA.

Container Ship Departing New York Harbor

Figure 1- Container ship departing New York harbor. (https://i.ytimg.com/vi/xlDMV06N9W4/maxresdefault.jpg)

The reasoning behind the targeted campaign against sulfur is while a vessel is transiting within a SECA, it will inevitably encounter more coastal areas and their population, increasing the chance of exposure to sulfur oxides (SOx). The mandated lower sulfur concentration is intended to limit crewmember and community exposure in addition to reducing the acidification of soils and freshwater (Zetteral et al., 2016). SECAs currently enforced include the Baltic Sea, the North Sea, the English Channel, and coastal waters around the U.S., Canada, and the U.S. Caribbean Sea. The area a SECA spans varies between geographic regions. To put that into perspective, the U.S. SECA (Figure 2) is roughly equivalent to the 200 mile exclusive economic zone (EEZ). Regulatory enforcement of the U.S. SECA is a joint collaboration between the U.S. Environmental Protection Agency (EPA) and U.S. Coast Guard (USCG).

Figure 2- A map depicting the established SECAs.( http://worldmaritimenews.com/wp-content/uploads/2014/07/ECA_EU_NA_2.png)

A drawback to this strategy occurs when vessels are operating outside of a SECA, i.e., the open ocean, where fuel sulfur content is allowed to be as high as 3.5%. Luckily, this regulation is set to change on Jan 1, 2020, when the mandated limit for open ocean sulfur content is reduced to 0.5%. In the meantime, many vessels carry both low and high sulfur fuels with established change-over procedures for entering or departing a SECA. The carriage of both types of sulfur fuels is simply a matter of cost. 0.1% fuel oil is more refined or “filtered” than high sulfur fuel oils. The more refining fuel oil undergoes to reduce sulfur content and impurities, the higher the production costs.

Positive Outlook

The authors of this paper explored the effectiveness of one SECA in particular: the Baltic Sea. They followed one vessel during two phases of operation; phase one was conducted prior to the January 1, 2015 0.1% implementation date in November 2014; phase two in April 2015. The vessel operated on 0.5 % sulfur fuel oil in November 2014 and 0.1% sulfur fuel oil in April 2015. To gather the best data encompassing every performance capability, the vessel was powered under three different modes of operation: high, medium, and low. An easy way to equate these operational levels is to compare them to driving a car: the high mode would be like driving on a highway, medium would be local travel in a town, and low would be at idle. The authors used direct measurements of funnel (smokestack) emissions and analyzed the exhaust for several different types of chemicals which included carbon (C), SOx, nitrous oxides (NOx), ash, and particulate matter. This experiment yielded some pretty amazing results. Particulate matter was significantly reduced by an incredible 67% when burning the 0.1% fuel. Even more impressive, the results of the observed SOx data yielded a phenomenal 80% reduction! In addition, the low sulfur fuel led to an overall reduction in total volatile organic compounds (VOCs). This evidence is even more compelling when you apply these results to the thousands of vessels worldwide that are required to meet the SECA regulations.

 A Personal Touch

I am extremely fortunate to have reviewed this research from a unique prospective; not only as a graduate student, but also as a Coast Guard inspector who has conducted numerous MARPOL examinations verifying SECA compliance onboard vessels. This process necessitated a thorough analysis of vessel fuel oil logs, fuel oil transfer procedures, and safety management systems. In a few cases, vessels found to be in violation of the SECA requirements were restricted to port and denied departure until compliant fuel (< 0.1%) was obtained. This research was such a breath of fresh air showcasing just how effective a coordinated effort between international regulatory bodies and the shipping industry has been in substantially reducing SOx and other chemical emissions from ships. This cooperative model would be extremely valuable and useful in many other emission reduction applications.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 8 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 9 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com