you're reading...

Sea Ice

Sea Ice Mixes it Up

Source: Manucharyan, G. E., and A. F. Thompson (2017), Submesoscale Sea Ice-Ocean Interactions. J. Geophys. Res. Oceans, 122, doi:10.1002/2017JC012895

Ice and Climate

Sea ice plays an important role in the climate system by modulating interactions between the ocean and atmosphere. For example, sea ice shields the surface ocean from winds and reflects a lot of sunlight due to its white color. Through mechanisms such as this, sea ice affects the ocean’s uptake of heat and nutrients. Therefore, accurately predicting sea ice extent and thickness is crucial to understanding and modeling global climate.

Current climate models do a bad job of accounting for sea ice processes, particularly on small spatial scales and in marginal ice zones, which are regions of the ocean only partially covered by ice. Therefore, a new study uses a complex model to examine how small-scale ocean currents and mixing impact the distribution of sea ice in marginal ice zones. This type of research will improve climate models by helping unravel how sea ice is influenced by (and influences) the ocean and atmosphere.

Making Waves

Taking measurements in the polar regions, where sea ice is common, is difficult due to the remote location and harsh weather. Because observational data is so sparse, a group of scientists used an ice-ocean model to investigate small-scale sea ice processes.

Scientists collecting data in a marginal ice zone. Source: Katrine Claassens via Wikimedia Commons.

In order to begin running a model, you must initialize it by specifying the starting values for certain variables such as temperature and salinity. The researchers in this study initialized their model with conditions that are common in marginal ice zones, allowing them to better represent processes in that environment.

One of the focuses of this study was to see how eddies, which are circular currents, impacted sea ice distribution. The results showed that sea ice tended to accumulate in cyclonic eddies (counterclockwise flowing in the northern hemisphere or clockwise flowing in the southern hemisphere). This is because cyclonic eddies are associated with piling up of water due to winds. These same winds move sea ice, causing it to build up as well. Furthermore, the transport of sea ice to warmer, previously ice-free surface waters resulted in cyclonic eddies also being regions of high heat transfer between the ocean and ice. Conversely, anticyclonic eddies (flowing in the opposite direction) typically showed lower concentrations of ice and had less heat transfer.

Satellite image of a marginal ice zone. Surface ice distribution clearly reflects circular flowing eddies. Source: NASA via Wikimedia Commons.

Another result from the model used by the researchers in this study was that most of the ice melt and growth occurred at the ice edges. Melting of sea ice adds freshwater to the ocean, while sea ice formation injects salt. By changing the salinity of the surface water, these processes in turn affect the stratification of the upper ocean since the density of seawater depends on the amount of salt in it. Therefore, this study found that there were lots of rapid changes in salinity near the ice edges, and these instabilities resulted in increased mixing and turbulence.

In other words, when trying to understand the distribution of sea ice in marginal ice zones, it is important to consider both the transport of ice by small-scale currents and eddies as well as the mixing that is generated by ice melt and growth at the ice edges. This mixing, triggered by the ice itself, can also in turn play a role in transporting the ice and controlling its distribution. There are many feedbacks like this in the climate system.

Average monthly Arctic sea ice extent from 1979-2012, showing a significant decrease over the past several decades. Source: NSIDC via Wikimedia Commons

On Thin Ice

Sea ice extent and concentration is driven by a complex combination of circulation and mixing, as well as interaction with the atmosphere. Understanding these processes is critical to improving climate models. Studies such as this are particularly relevant since the past few decades have seen dramatic declines in Arctic sea ice. As global ocean temperatures continue to increase, break up and melting of sea ice will actually cause marginal ice zones (regions of partial ice coverage) to expand. Therefore, accurately describing the dynamics in these regions, through studies like this one, will become increasingly important to future climate predictions.


No comments yet.

Post a Comment


  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 9 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 10 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com