you're reading...

Biological oceanography

Antarctic krill retreat to icy terrace homes for the winter

Source: Meyer, Bettina, et al. “The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill.” Nature Ecology & Evolution(2017): 1. doi:10.1038/s41559-017-0368-3

The world’s most abundant animal

Antarctic krill, tiny little shrimp-like animals that grow up to 2.4 inches long, are a keystone species in Antarctic food webs, acting as the main food source for many marine mammals including seals, whales and penguins. Antarctic krill live throughout the Southern Ocean in the open ocean, near coastlines and under ice, and are, in terms of biomass, probably the most abundant animal species on the planet (approximately 500 million metric tons, corresponding to 300 to 400 trillion individuals). Krill spawn their eggs in late spring and the tiny larvae grow during summer and autumn before spending winter under the shelter of sea ice, emerging as juveniles the next spring. The krill larvae need algae to feed on throughout their first year so they can grow into healthy juveniles, but during the winter when there is little sunlight, food is hard to come by.

An Antarctic krill. Adapted from the Australian Antarctic Division.

As a result, scientists have hypothesized that the krill larvae must be relying on algae growing in winter sea ice to get through the harsh winter where there is very little to eat in the water below the ice. But in some recent observations there does not seem to be a clear relationship between winter ice conditions and the success of krill larvae, so maybe the relationship between ice and krill larvae success is not as straightforward as we thought. As sea ice in the Antarctic is changing rapidly in response to climate change, figuring out how the ice affects krill will help scientists figure out how Antarctic ecosystems will be affected by sea ice change.


Diving below the ice

To delve deeper into how ice influences krill larvae, a group of scientists took a ship, the RV Polarstern, to the Weddell Sea in Antarctica for two months in late winter and early spring 2013. to survey krill larvae across three different zones: the open ocean, the marginal ice zone and pack ice zone. In each of these regions, the scientists collected samples of krill, analyzed water properties and  As well as collecting samples,  the researchers completed 68 scuba dives under the sea ice, at four different locations. They collected video footage to count the number and behavior of krill larvae in different regions.

Fig. 1 from Meyer et al. 2017 showing the location of the ship track (black line) and locations where larvae were caught for analyses of growth rate, feeding activity and stomach content (red).


When the growing gets rough

Larvae were most abundant where the ice was thick and the underside of the ice was rough and varied, with ledges and nooks and crannies. They found particularly large concentrations of krill larvae living on sea ice ‘terraces’, which are like a ledge of ice sticking out with a roof of ice above. These terraces make good winter homes for krill larvae because the terraces collect organic material released from the ice above, making an easily available feeding ground for the larvae.

Fig. 3 from Meyer et al. 2017 showing a terrace under sea ice that acts as a feeding ground for Antarctic krill larvae during the winter.

The researchers also found that krill larvae feeding and growth were associated with food availability in the water column, but not related to the amount of food within the sea ice. In fact they looked at the stomach contents of larvae feeding on the sea ice surface and found a lot less food than larvae in the open water, suggesting that the algae in the sea ice were not easily accessible. So instead of feeding on algae directly on the ice as previously thought, they feed on food particles released in the underlying water below.

Supplementary Video 1 from Meyer et al. 2017 showing patchiness and behavior of larvae under sea ice during the day in the pack-ice zone.

Now that they had shown that krill larvae do better under rough ice, the researchers looked at how the distribution and extent of rough ice might change in response to climate. Using a model to project into the future, they found that regions under rough ice that are favorable for krill larvae to spend the winter will be more prevalent under conditions predicted for the end of this century. However, at the same time, the overall sea ice extent is expected to decrease, leading to ice-free conditions in the late winter and early spring.

Fig. 6 from Meyer et al. 2017. Sea-ice model output, showing favourable sea-ice habitats for larval krill in September under current conditions (a) and under a warm climate scenario (b). Darker colors show the ice ridging rate, where higher ridging rates (darker colors) indicate more complex ice that is suitable for krill larvae habitat.

Beyond the ice edge

The new results of this study show that the relationship between ice and krill growth is complex, and a lot more work is needed to fully understand how krill change in response to changes in ice. Given that these organisms support a vast and important ecosystem, understanding and protecting their habitat is necessary in any efforts to conserve Antarctica’s unique wildlife.


No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 7 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 10 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com