//
you're reading...

Biology

Bringing Down the Fever: Sea Star Wasting Disease

Kohl, W. T., McClure, T. I., & Miner, B. G. (2016). Decreased Temperature Facilitates Short-Term Sea Star Wasting Disease Survival in the Keystone Intertidal Sea Star Pisaster ochraceus. PLOS One, 11(4), e0153670. doi:10.1371/journal.pone.0153670

 

Sea Stars, British Columbia. Photo by D. Gordon E. Robertson, 2008.

Sea Stars, British Columbia. Photo by D. Gordon E. Robertson, 2008.

Illness in the Intertidal

We all get sick from time to time; catch colds or get the sniffles. One of the best ways your body knows to start healing is to raise its core temperature. Congratulations, you have a fever! Many doctors advocate bringing high fevers down, especially to avoid further damage to one’s internal organs or brain. However, in cases of bacterial or viral-induced fevers, lowering your temperature could lead to added recovery time since not all the nasty bugs are killed off quickly. Now you might be thinking what this concept of temperatures, fever, and progressions of illness has to do with anything marine-related.

Thanks to a new study by Warren Kohl and colleagues, it has been determined that sea stars infected with Sea Star Wasting Disease (SSWD), experience a slower progression of the illness when living in cooler waters.

SSWD has been around for a long time—nearly three quarters of a century, at least since humans have known about it. In recent years, it’s become a large concern on both the eastern and western coasts of the USA with mass mortality events in 1972, 1978, and 2013. Approximately forty distinct species of sea star can succumb to the disease. The disease itself is relatively grotesque, beginning with small lesions developing on the epidermis of the sea star, and progressing to entire limbs falling off (think leprosy for sea stars). Ultimately, SSWD results in the death of a sea star. With the number of species susceptible to SSWD, scientists are eager to learn more about how environmental factors may impact the disease’s mortality rate. Previous studies have pointed towards temperature playing a large role in the disease’s rate, where higher temperatures result in faster mortality.

 

Methods & Results

Figure 1: Salish Sea located between Washington state and Canada on the west coast.

Figure 1: Salish Sea located between Washington state and Canada on the west coast.

Kohl’s team was intrigued by the relationship with temperature and wanted to test if colder temperatures could reduce morbidity or eliminate infection entirely. Previous surveys of the Salish Sea (see Fig. 1) indicated a seasonal component to disease progression in sea stars, where fewer SSWD mortalities were logged in winter months when compared to summer. Following this idea, Kohl’s team collected a small group of Pisaster ochraceus sea stars (seventeen individuals) from two sites in July, 2014. Unfortunately, the disease had spread rapidly through the area in 2013 and no individuals collected were free of SSWD to act as a control.

Sea stars were transported back to the laboratory and set up under two treatment conditions: 9º C water or 12ºC water. Seawater was filtrated and heated/cooled to the appropriate temperature prior to being added to the housing tanks. The experiment became a waiting game as the scientists monitored how the SSWD symptoms progressed.

Figure 2: Mortality and Morbitidy. (A, Left) depicting time to death in two temperature treatments; (B, Right) progression of the disease in infected individuals (5 stages of the disease, starting with small lesions → medium lesions → large lesions on two arms → large lesions on three or more arms or perforated body walls/limb detachment → ultimate death). Kohl et al. (2016), Figures 2&3.

Figure 2: Mortality and Morbitidy. (A, Left) depicting time to death in two temperature treatments; (B, Right) progression of the disease in infected individuals (5 stages of the disease, starting with small lesions → medium lesions → large lesions on two arms → large lesions on three or more arms or perforated body walls/limb detachment → ultimate death). Kohl et al. (2016), Figures 2&3.

The main results were partly encouraging. Overall, sea stars housed at lower temperatures survived twice as long as their counterparts in the warmer tanks (Fig. 2A). In terms of disease progression, the lower temperature treatment showed a slower rate of progression where minor symptoms were drawn out before more severe ones emerged (Fig. 2B).

 

Big Picture

Now, these results are only partly encouraging for the simple fact that every sea star still died of the disease within 44 days of collection. While morbidity (the degree and progression of illness) was impacted, overall mortality was not. We know this disease has been in the intertidal zones for some time, but with concerns over climate change and rising ocean temperatures, the frequency with which we see mass mortality events could increase in the coming decades. In previous studies on P. ochraceus, elevated temperature treatments were set at 14º and 20º C; unfortunately, Kohl’s team found equal mortality rates at 12º C, indicating P. ochraceus populations might be differentially susceptible to temperature stress, depending on local conditions.

Sea stars are keystone species, highly important players in the rocky intertidal zones. Sudden decreases in their populations have the potential to upset the balance in many of these ecosystems. However, work is constantly being done to assess what bacterial or viral vector is responsible for SSWD. And steps taken by scientists, like here in this study, will undoubtedly reveal more avenues by which to slow and eliminate this threat to sea stars.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 3 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 9 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com