//
you're reading...

Coral

Can Corals Recover from the Effects of Climate Change?

Reference: Evans, Richard D., et al. “Early recovery dynamics of turbid coral reefs after recurring bleaching events.” Journal of Environmental Management 268 (2020): 110666. https://doi.org/10.1016/j.jenvman.2020.110666

Coral reefs are cherished around the world for their beauty and their ability to provide for a variety of animals. From Australia’s Great Barrier Reef to Mexico’s Palancar Reef, divers, snorkelers, and beach-goers of all kinds are attracted to these underwater habitats. Unfortunately, many coral reefs have been shrinking in size due to coral bleaching.

A diver surveying a coral reef that has extensive bleaching in Hawaii. The white, bleached coral is a stark contrast from the healthy, red-brown coral in the foreground of the photo. Image via Wikimedia Commons.

What are corals, and how do they bleach?

Corals have two main parts: the polyps, which are soft bodied organisms that provide the shape of the coral, and zooxanthellae (zoh-uh-zan-thel-ee), which are algae that live within the tissues of the polyps and provide corals with their color. The zooxanthellae also provide energy to the polyps through photosynthesis. As the polyps grow, they can create a skeleton to give the coral structure. This relationship is essential to the survival of the coral. When corals become stressed, usually due to pollution or increased water temperature, they release their zooxanthellae. Since these algae provide energy for the polyps, the polyps starve, and are at an increased risk of death. In addition, because the zooxanthellae also give the corals their color, the corals then turn white.

Bleached coral does not necessarily mean dead coral, and sometimes parts of a reef that have been bleached can recover if the algae can return to the polyps. This most often occurs when the water conditions that caused the bleaching are reversed, such as water temperatures returning to a normal range after a warming event. Given that corals provide food and shelter that many marine animals rely on to live, and that corals are a huge tourist attraction for the areas in which they are located, scientists are very interested in the environmental conditions under which corals can best recover after bleaching. To get at this problem, researchers examined coral growth off the western Pilbara coast of Australia.

An example of an acroporid coral on a Hawaiian reef. Acroporids differ from other hard corals because in addition to secreting a skeleton at their base, these corals also have a calcified skeleton at the tip of each polyp. Image from NOAA via Wikimedia Commons.

Measuring factors of coral recovery

Researchers focused on the growth of hard corals as a whole, as well as acroporids specifically. Hard corals are those species which secrete a skeleton, and acroporids are a subset of hard corals that are typically first to appear as coral reefs recover from bleaching. The research team measured the number of settled coral recruits (larval corals which have attached to a surface), juvenile corals, and adult corals in several sites along the west Pilbara coast before, during, and after a bleaching event caused by extremely warm temperatures. The bleaching event occurred in 2011, and the study examined coral reef sites from 2009-2018. These sites had differences in presence of herbivores (animals such as fish, crabs, and sea urchins), water depth, algae cover, and turbidity (i.e. the cloudiness of the water). By focusing on how each of these factors helped or hindered coral recovery, this study provides valuable information about the water conditions needed to protect and conserve our existing coral reefs.

An example of coral recruits. These coral larvae are in the water column until they can successfully attach to a surface, and can only grow once this attachment occurs. Image by Narissa P. Snipes via Wikimedia Commons.

Which factors help or hurt coral recovery?

Coral coverage declined considerably during and after the bleaching event. In 2011, coral cover was 45% in west Pilbara, but by 2014, coral cover reached its lowest point at just 5%. Nonetheless, reefs did show slow signs of recovery in the following years, eventually increasing cover to just over 10% by 2018, seven years after the main bleaching event.

Acroporid coral species were the first to bounce back, as researchers predicted based on the findings of previous coral recovery studies. No relationship was found between levels of larval coral recruitment and adult coral recovery. Juvenile coral growth, however, was strongly associated with adult coral growth and recovery. Thus, if conditions allow coral to grow into juveniles, there is an increased chance of adult coral recovery.

Considering the environmental factors studied, water turbidity had the most detrimental impact on adult coral recovery. The cloudier the water, the less coral recovery occurred. This makes sense, since the corals rely on light to gain energy from their photosynthetic zooxanthellae, and cloudy water means less light can actually make it to the corals. Depth had a negative effect on coral recovery for a very similar reason: the deeper you are in the water, the less light reaches you. Macroalgae also negatively affected corals. Algae can grow very fast and can take over an area once coral cover has decreased, making that space unavailable for coral recovery. Macroalgae can also grow very tall or wide and shade growing coral, also causing diminished growth due to lack of sunlight. Given this relationship with macroalgae, it is no surprise that corals have higher recovery when herbivores, which actively eat algae, are present in an area.

An intertidal coral reef that has been taken over by macroalgae in Taiwan. The reef is covered by water during high tide, but the algae overgrowth prevents coral from getting enough sunlight to grow. Image by Wei, Wan-Chen via Wikiemedia Commons.

Why should we preserve corals?

Coral reefs are incredibly important habitats, and provide many benefits for the animals and communities that interact with them. With the growing threat of climate change, coral reefs around the world have increasingly become subject to bleaching. Coral reefs aid coastal cities by protecting against storm surges, tourism and fishing rely on coral reef species, and the ocean as a whole requires resources that reefs provide. If all corals were to bleach and die, our marine ecosystems would be forever impacted, and a valuable resource would be lost. By determining the circumstances under which corals can best recover after bleaching, we may be better able to preserve these extremely critical environments for years to come.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 1 day ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 1 month ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 4 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 5 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 5 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 6 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 6 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 7 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 7 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 8 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 8 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 8 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
WP2Social Auto Publish Powered By : XYZScripts.com