//
you're reading...

Evolution

A Deep Water Dimmer Switch: How Fish Use Light as Camouflage

Davis, A.L., Sutton, T.T., Kier, W.M., Johnsen, S. 2020. Evidence that the eye-facing photophores serve as a reference for counterillumination in an order of deep sea fishes. Poc. R. Soc. B 287: 20192918.

http://dx.doi.org/10.1098/rspb.2019.2918

Introduction

The deep ocean is one of the most challenging places for any animal to live. Creatures that live in the deep ocean cope with high water pressures, cold temperatures, food scarcity, and a lack of sunlight. There are three “zones” of the ocean, which are defined by how much sunlight they get. Sea water scatters and absorbs light, so the deeper you go, the darker it becomes. The surface zone is referred to as the “sunlight zone”. This is where most marine species live, and where plankton, kelp, and algae are able to photosynthesize. At about 650 feet, a fish will enter what is known as the “twilight zone”, where sunlight rapidly decreases with depth. At 3,300 feet down, in the “midnight zone”, there is no light other than the light that animals themselves create.

The zones of the ocean are dependent on how much sun light reaches their depth. Credit: NOAA

The zones of the ocean are dependent on how much sun light reaches their depth. Credit: NOAA

A big problem that fish in the twilight zone face is how to camouflage themselves. With low levels of sunlight coming from above and no light source below them, the fish appear as obvious silhouettes to predators swimming below and make for easy meals. However there are certain fish families, such as dragonfish, lanternfish, and hatchetfish, which use counter-illumination to camouflage themselves from predators below.

A deep sea fish with ventral photophores. Credit: DEEPEND

Counter-illumination is when an animal emits light from its underside to avoid being seen from below. Fish that are able to counter-illuminate have special organs called photophores on their bottom half, or ventral side, to create light. They create this light either through a chemical reaction, or through a symbiotic relationship with bacteria that live within the photophore.

But how do fish know how bright their photophores should be? Just like on land, light in the ocean fluctuates based on factors like the weather and what time of day it is. These fish can adjust the strength of the light produced by their photophores to match the intensity of the light coming from above them, but most fish have forward facing eyes, so there is no way for them to see the light they are producing on the ventral side of their body. Davis and co-authors aimed to solve this mystery by looking at photophores found on the faces of these deep sea fish.

What did they find?

Davis and co-authors used 21 fish that were collected and preserved on research cruises between 2009 and 2017 from the Gulf of Mexico, as well as 15 preserved specimens that they borrowed from the Smithsonian Museum of Natural History. They targeted specific species that had photophores around their eyes, but did not use the photophores on their face as a “search light”. Species that used photophores as a search light use the light they produce as a flashlight to attract and hunt prey, like the angler fish from Finding Nemo.

Three images of fish in the Davis et al. study. Arrows show the direction of light from the photophores, moving towards the fish’s eyes.

Three images of fish in the Davis et al. study. Arrows show the direction of light from the photophores, moving towards the fish’s eyes (used with permission from author).

Once they had collected and described these fish and their relationship to one another, they looked at the direction in which the photophores were facing using a microscope and a miniature version of a CT scan. They found photophores that faced the fish’s eyes in all of the species that had photophores used for camouflage. All of these eye facing photophores were also surrounded by a layer of melanin, the same pigment that is responsible for determining the color of human skin and hair color. This layer of melanin focused the light from the photophores towards the fish’s eyes. In some of the fish species the eye had adapted to have a special opening in its lens, called the aphakic gap, which was lined up with the light produced by their photophores.

The researchers concluded that fish that had eye facing photophores used them as a calibration tool to match the intensity of the light around them. They used this specialized photophore as a proxy for the brightness of their ventral photophores, and then were able to adjust the light they were producing to eliminate their silhouettes.

Why does this matter?

This research is a great example of how scientists use morphology, or the form of an animal, to see how it is related to other animals and how its body has evolved over time. Davis and co- authors were able to construe that these two traits, having photophores on their bellies and photophores facing their eyes, evolved dependently. Dependent trait evolution  occurs when two traits that are tied to each other evolve at the same time. Because the photophores on the face of the fish determined how they were able to control their counter-illumination, and better counter-illumination led to better camouflage, fish that evolved to have both of these traits had a greater chance of survival and a greater opportunity to reproduce to pass down those traits to their offspring.

 

 

 

Discussion

One Response to “A Deep Water Dimmer Switch: How Fish Use Light as Camouflage”

  1. Really informative post about creatures that live in the deep ocean.Thanks for sharing.

    Posted by Baksh Capital | July 28, 2020, 7:34 am

Post a Comment

Instagram

  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 3 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 8 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 9 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com