you're reading...


Counterintuitive? Fish make more brain cells in water rich with carbon dioxide

Reference: Wang, Xiaojie, et al. “Brain regions of marine medaka activated by acute and short-term ocean acidification.” Science of The Total Environment 720 (2020): 137279. DOI: 10.1016/j.scitotenv.2020.137279

A strange, poisonous gas has been spreading around. Its inhalation is unavoidable. After breathing it for a while, everyone starts acting bizarre. Some confuse left and right; others ignore warning noises and walk right into dangerous traffic. Children can’t seem to remember simple things. This sounds like a horror movie scenario, but it is an actual looming, malignant possibility – just not for humans. The gas is carbon dioxide, and its victims are fish in the ocean.

Medaka, also called Japanese rice fish, are a popular aquarium breed that are also used extensively in research. Photo by Wikimedia commons.

Our civilization requires lots of energy for heat, industry, and travel. Most of this energy comes from burning fossil fuels, releasing carbon dioxide into the atmosphere. About a third of this carbon dioxide is absorbed by ocean waters. Saltwater is basic, and carbon dioxide dissolved in water is acidic, so the buildup of carbon dioxide in the ocean, called hypercapnia, acidifies water by making it inch towards neutrality. 

While ocean acidification doesn’t actually render the water as acidic as lemon juice, it still holds plenty of detrimental potential for marine life. A team of researchers at Shanghai Ocean University, China, studied how hypercapnia affects the brains of the marine medaka fish. They discovered that fish who spent a week in acidified water started making more brain cells – and possibly developed anxiety.

The acid test

New nerve cells (neurons) are continuously born in the adult brains of many species, including humans, but this process, known as neurogenesis, is especially prevalent in fish. Brand-new brain cells are important for making new memories and controlling emotions – but can life in acidified water change that?

In many species, from fish to humans, the adult brain continues to generate new neurons. Photo by Robina Weermeijer on Unsplash

The researchers kept the medaka in tanks with acidified water for up to a week. They then collected the brains from half the fish and compared them to the brain of medaka who had been kept in normal basic water. To identify new neurons, they looked for a protein called doublecortin, which marks newborn nerve cells. 

Surprisingly, the acidified water-dwelling medaka had much more doublecortin in their brains than the normal water-dwelling medaka, meaning that their brains had been busy making new neurons. Could hypercapnia be promoting neurogenesis?

Scaredy fish

As hypercapnia is known to change how fish react to noise and predators, the researchers wanted to know if a week in acidified water changed the medakas’ behavior. They took the remaining half of the medakas and subjected them to a light-dark preference test, which is often used to measure anxiety in laboratory animals.

The light-dark preference test uses a tank that’s painted half in black and half in white. Because fish are curious and like to explore new spaces, normal fish would scout around everywhere. But a dark corner is a great hiding spot for fish from their enemies in the ocean, so nervous fish may show a preference for dark space.

Indeed, the medaka from acidified water were quick to scurry towards the supposed safety of the dark half of the tank, staying there for two minutes before coming out and swimming all around the tank. By comparison, the medaka from normal, basic water enjoyed the entire tank from the very first moment. This urge of acidified water-dwelling medaka to skulk in the dark may mean that hypercapnia elevates anxiety in fish.

A grain of salt

The discovery that acidified water activated neurogenesis is rather surprising, especially when coupled with the finding that it made the medaka anxious. These results seem to contradict the known role of neurogenesis, which helps overcome behavioral disorders like depression and anxiety. But much of neurogenesis research was done not in fish but in mice, and it may be hard to compare how new neurons affect the behavior of the two drastically distinct species. 

Despite this discrepancy, there is no doubt that ocean acidification affects fish. The influx of carbon dioxide is changing their underwater world, and their world is changing them. After all, even lots of new brain cells don’t guarantee a happy life if a fish can’t escape breathing in carbon dioxide through its gills.


No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 10 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 11 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com