//
you're reading...

Behavior

Cuttlefish Cognition: are these oceanic invertebrates capable of learning?

Reference: Kuo, Tzu-Hsin, and Chuan-Chin Chiao. “Learned valuation during forage decision-making in cuttlefish.” Royal Society Open Science 7.12 (2020): 201602. https://doi.org/10.1098/rsos.201602

What can animals learn?

Animal learning is becoming an increasingly popular field of science and is expanding our idea of animal intelligence. Many fish species can learn the location of obstacles in a landscape to quickly escape danger, dogs can be trained to understand over one hundred words in a human language, and rats are champions of various maze experiments. But does this animal learning extend to invertebrates, who do not possess spinal columns and are generally thought to be more primitive than their vertebrate cousins? It would seem so, at least in one group – the cephalopods.

The Pharaoh Cuttlefish, Sepia pharaonis. This species can grow quite large, up to 42cm, and is typically found in the Indian Ocean. Image by user Stickpen via Wikimedia Commons.

Cephalopods include the famous octopuses, who have been shown to display a great degree of intelligence, often wriggling through small holes to escape tanks, or shooting water at light fixtures to extinguish them. Cuttlefish are also members of the cephalopod group, are slightly smaller than octopuses, and are well known for their hypnotic color-changing ability. Cuttlefish are also considered intelligent, most notably in their ability to count the number of shrimp they are about to eat, but their learning and decision-making has rarely been put to the test. To see if cuttlefish are capable of such intellectual pursuits, a research team at National Tsing Hua University in Taiwan devised a series of feeding experiments on Pharaoh Cuttlefish, Sepia pharaonis.

Intellectual ingestion

The cuttlefish were raised from eggs in order to control for effects of the environment, and 55 total individuals were used. Cuttlefish were all first placed on one side of a tank, and on the opposite end were two chambers. One chamber had a box containing a single shrimp and the other had a box containing two shrimp. The cuttlefish were making the choice solely based on visual clues and were not actually fed the shrimp after making a choice. Shrimp are a common food item for cuttlefish, so this test was meant to confirm that cuttlefish will choose larger quantities of shrimp to eat, similar to previous studies. Researchers found that about 80% of the cuttlefish chose the chamber with two shrimp.

Most cuttlefish eat a wide variety of food items, including fish, as seen here. In addition to the shrimp fed in this experiment, pharaoh cuttlefish in particular also eat crabs, and have even been known to eat members of their own species if hungry enough! Image by Elaine de Jager via Wikimedia Commons.

Then, after being fed, cuttlefish were split into two groups: one which was “primed” before repeating the above experiment, and the other which was not primed – they simply repeated the above procedure a second time. Repeating the experiment without priming was to observe if cuttlefish made the same food choices with full stomachs. In the priming phase, cuttlefish were given the choice of two chambers again, but one chamber had one shrimp and the other had none. When the cuttlefish went to the chamber with one shrimp, the researchers fed them a shrimp, to make this option more valuable to them. If the priming was successful, cuttlefish would learn that choosing one shrimp would lead to an immediate reward, and would be more likely to choose one shrimp when deciding between one or two shrimp chambers.

Results showed that the priming was indeed successful, with around 60% of primed cuttlefish choosing one shrimp over two shrimps in their final trial. On the other hand, the cuttlefish group without priming chose two shrimps about 80% of the time, showing that cuttlefish will still choose a larger quantity of food even when they have recently eaten. So, what does this mean in the context of cuttlefish learning?

How do cuttlefish learn?

The authors present two possible explanations. In the first, cuttlefish are capable of making food related “value-based decision-making”. Under this explanation, cuttlefish can give a perceived value to certain choices (i.e. an amount of food they will receive), and this value can change based on experience. While two shrimp may initially have more perceived value, if a cuttlefish only receives food when choosing one shrimp, that option has a higher value, and will be chosen in the future.

A cuttlefish displaying an incredibly complex feat: camouflage. This trick helps cuttlefish to avoid the eye of predators who may want to eat them, as well as sneak up on unsuspecting prey. While camouflage may not take a lot of brain power for the cuttlefish, as it depends on special cells in the skin, it highlights the advanced capabilities of these animals. Image by Tongjin via Wikimedia Commons.

The authors’ second explanation deals with positive reinforcement training. Under this explanation, the cuttlefish learn that when choosing one shrimp, they receive a reward. They will then continue to perform the rewarding behavior in the hopes of getting additional rewards, and eventually perform the behavior simply because they associate it with something positive. This is a type of learning that is very effective in a wide array of animals, and that many of us are familiar with in the context of dog training.

With these two explanations, the end result of cuttlefish choosing one shrimp over two is the same, but the learning process to get there is different. With value-based decision making, the cuttlefish make a choice based on what they perceive is the more valuable option. If the extra shrimp stopped being given, the cuttlefish would eventually stop choosing one shrimp over two. Under positive reinforcement, the cuttlefish are trained to choose one shrimp with a reward, and so would likely continue to make the same choice well into the future, even if the reward is no longer given.

While the exact explanation of how cuttlefish make decisions eludes science for now, it is clear from this experiment that cuttlefish are capable of learning, being trained, and making decisions. They aren’t mindless animals acting purely out of instinct. Science is beginning to reveal that many animals, from tentacled invertebrates to man’s best friend, have a greater depth of intelligence and capacity to learn than previously thought. With new information that will undoubtedly only continue to be uncovered, we will hopefully all gain a greater appreciation for the animals that we share the planet with.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 days ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 1 month ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 4 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 5 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 5 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 6 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 6 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 7 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 7 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 8 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 8 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 8 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
WP2Social Auto Publish Powered By : XYZScripts.com