you're reading...


Disoriented fish are getting lost at sea!

Article: Rossi T, Nagelkerken I, Simpson SD, Pistevos JCA, Watson S-A, Merillet L, Fraser P, Munday PL, Connell SD. 2015 Ocean acidification boosts larval fish development but reduces the window
of opportunity for successful settlement.
Proc. R. Soc. B 282: 20151954. DOI: 10.1098/rspb.2015.1954


Barramundi fish. photo credit: Charlene M. Simmons, flickr creative commons.


Sound is of huge importance in the marine environment (as you might have noticed from this week’s OceanBites posts)! Sound pressure waves carry information long distances due to the low attenuation of acoustic energy in water. This information can be in the form of communication (animals “talking” to one another), or proximity detection (helping “show” where and how far objects are). Acoustic cues have been shown to be an extremely important aid in the settlement behavior of fishes and some invertebrates. In other words, larval fishes are responding to the sounds of the ocean in order to find a safe and happy home to grow old in. Unfortunately, ocean acidification is proving to be a difficult barrier for young fish, disrupting their acoustic navigational skills and making it harder for them to find a suitable place to settle.

Nagelkerken et al. set out to examine the effects ocean acidification has on important behavioral traits needed in different stages of a fish’s life, such as sound-driven activities.


How the acoustic cues were tested in fish

The researchers chose to focus on the barramundi fish, a highly valued commercial and recreational fish whose habitat extends from the eastern Indian Ocean to the western Central Pacific. The barramundi is distinctive in that it is a catadromous species (migrates from fresh water to the salty ocean water in order to spawn).

Over the course of fifteen days barramundi (both barramundi raised in normal water conditions and barramundi raised in highly acidified waters) were observed to see if they were attracted to acoustic cues in the environment. These cues were a combination of video and sound recordings of a typical reef environment. For example, the snapping of shrimp would indicate that mangroves are nearby (an ideal settlement spot for the barramundi), and thus the barramundi would likely follow the snapping sound. Over the five minutes in which the sound cues were played, the behavior of the fish was noted: did the fish swim toward the sounds, away from them, or did they even seem to notice the sounds at all?

fig 1

Fig.1 Effect of ocean acidification on swimming velocity and fish size throughout larval development. (a) Mean (þs.e.) swimming velocity during audition trials and (b) mean (þs.e.) fish standard length during development. Asterisks indicate significant ( p , 0.05) differences between distributions. Letters indicate significant differences between groups of dph for combined CO2 treatments (pair-wise tests).

What they found and why it matters

Under acidified conditions (higher levels of CO2), larval barramundi grow faster and thus enter their metamorphosis phase earlier. This expedites their journey to find salt water and a safe home to settle. If that isn’t stressful enough, the effects of CO2 also affected the barramundi’s sound-driven orientation, swimming behavior, and sheltering behavior (Fig. 1)! When exposed to high CO2 levels, these poor fish became disoriented and lost. When the ocean acidity increased, the neurological pathways of the fish were disrupted and instead of heading towards a potentially safe home in the mangroves (indicated by the snapping of shrimp) the fish became confused and actually tended to swim AWAY from the sound cues (as seen in this video).

Fish can use a suite of senses to locate suitable homes; sound, olfaction (smell), and vision. Sound travels the best in water and is therefore the most important cue for fish, but with the increasing CO2 levels and ocean acidification, sound cues are proving unreliable and even hindering the fish’s ability to find a proper settlement space. While olfaction and vision could potentially compensate for the ineffective processing of the auditory sensory, they, too, are likely to be impaired. Further studies are needed on this, but the results will likely be similar and show just how damaging ocean acidification can be. More and more fish will become lost, making themselves vulnerable to predation and making it difficult for them to successfully reproduce.



No comments yet.

Post a Comment


  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 8 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 9 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com