//
you're reading...

Biology

Giant Clams Catch a Giant Break

Paper: Watson, S.-A. (2015). Giant Clams and Rising CO2: Light May Ameliorate Effects of Ocean Acidification on a Solar-Powered Animal. PLoS One 10, e0128405.

Introduction

Increasing carbon dioxide (CO2) emissions to the atmosphere eventually find their way into the oceans, gradually reducing the pH of the water, a process known as ocean acidification. This “side effect” of climate change has received a lot of attention in the biology community because most organisms have a narrow window of acceptable pH that they can live at. A lot of research has gone into figuring out the tolerance of different marine animals to lowered pH/increased CO2, and while some species will thrive, most studied animals don’t survive as well under the lowered pH conditions. There is evidence that shelled animals in particular, like clams or mussels or snails, will struggle to build their shells because the lower pH water is corrosive and can cause parts of the shell to dissolve.

Giant clams are a shelled animal, but they’re not your average shelled animal: not only can they grow up to 4 ft (1.3m) long and weigh up to 1100 lbs (500kg), but they also have a unique feeding strategy that involves symbionts.

 

Figure 1 - Giant Clam

Figure 1 – Giant Clam

 

 

 

 

 

 

 

The giant clam has a partnership with these tiny bacteria; the clam gives them a place to live (the shell) and the bacteria help by photosynthesizing, giving the clam access to nutrients even in nutritionally poor waters. Photosynthesis requires both light and carbon dioxide, so the researcher in this study wondered what net effect the increased CO2 brought on by global warming would have on the clam. Would the increased CO2 help the clam by giving the symbiotic bacteria more fuel for photosynthesis, or would it hurt the clam by causing development and shell growth to proceed slower?

Methods

To answer that question, the researcher used juvenile giant clams and exposed them to low, medium, and high CO2, with the high CO2 level representing what’s expected by the year 2100. She also exposed them to three different light levels (low, medium, and high), which were created using a combination of florescent lights and natural light.

Figure 2 - Schematic of the different treatments

Figure 2 – Schematic of the different treatments

 

 

 

 

 

There were 20 giant clams in each of those nine treatments, and for each clam, measurements of shell dimensions (length/width/height/ornamental width) and weight were taken before and after the experiment to determine how much each clam grew within the 8-week treatment time. Of course, they also kept careful track of how many clams survived in each treatment.

Results and Significance

The amount of light the clam was exposed to was a big factor in determining both survival and growth. In the highest light condition (represented by PAR 304 – PAR stands for photosynthetically active radiation), 100% of clams survived regardless of the CO2 level they were exposed to. In contrast, in the mid light level (PAR 64), clams in the mid and high CO2 levels died more often than the clams in the low CO2 level (Figure 3).

Figure 3 – Survival at the mid light level (PAR 65) and the high light level (PAR 304). Colored lines represent the different CO2 treatments; in (c), the control and mid-CO2 levels are the same as the high CO2 level.

Figure 3 – Survival at the mid light level (PAR 65) and the high light level (PAR 304). Colored lines represent the different CO2 treatments; in (c), the control and mid-CO2 levels are the same as the high CO2 level.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to the clam’s survival, light also determined how much the clam grew. The clams grew the most in the highest light conditions by two orders of magnitude. However, even in the highest light condition, clam growth was reduced by medium and high CO2 (Figure 4).

Figure 4 – Growth of the clams in terms of mass (a) and length (c). The light blue bars represent the highest light conditions. Clams that were grown in the medium and high CO2 levels grew less than the clams grown in low CO2 levels.

Figure 4 – Growth of the clams in terms of mass (a) and length (c). The light blue bars represent the highest light conditions. Clams that were grown in the medium and high CO2 levels grew less than the clams grown in low CO2 levels.

 

 

 

 

 

 

 

What does this mean for the giant clam? The species is not immune to the effects of ocean acidification – high CO2 levels reduced both survival AND growth – but some of those negative effects could be counteracted if there was enough light. The giant clam has limited options about where to live on the reef because they need to have enough light to keep their photosynthetic bacteria going, and as depth increases, light decreases. If they need more light in order to avoid the negative effects of ocean acidification, they’ll have an even narrower depth range available to them than they already do and may struggle to compete for space with the animals who already live in those regions of the reef. However, in a species already listed as threatened by the International Union for the Conservation of Nature, it’s heartening to see that they might be able to escape the worst of the effects of ocean acidification.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 7 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 10 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com