you're reading...


Hydrothermal vents spew out tasty morsels for local marine consumers

Journal source

Chang N-N, Lin L-H, Tu T-H, Jeng M-S, Chikaraishi Y, Wang P-L (2018) Trophic structure and energy flow in a shallow-water hydrothermal vent: Insights from a stable isotope approach. PLoS ONE 13(10): e0204753. https://doi.org/10.1371/journal.pone.0204753.

It’s all about energy

Energy flow, the transfer of nutrients and organic matter from abundant algae and bacteria to consumers such as invertebrates and fish, is a central theme in marine food webs. A common view of energy flow in marine systems centers on open water and benthic (bottom-dwelling) algae, that transform light energy into organic matter, which in turn fuels grazing crustaceans and other organisms.

A generalized food web depicting “who eats whom.” Photo via Wikimedia Commons.

When hydrothermal vents come to mind, you might imagine an underwater volcano spewing up plumes of toxic gases, an inhospitable place that no crustacean or sea cucumber would call home. However, shallow-water hydrothermal vents occurring in coastal zones with ample light can support photosynthesis, which can provide food for benthic communities. Additionally, hydrothermal vents can support lots of different types of bacteria microbes that chemosynthesize – that is, use chemicals from these vents to produce energy for other organisms to eat.

(Featured image) Hydrothermal vent. Photo via NOAA Photo Library and Wikimedia Commons.

The study

The potential contribution of microbe-powered food to benthic consumers living in hydrothermal vent ecosystems is not well understood. One such vent ecosystem, Keuishan Toa (KST) off northeastern Taiwan, supports high numbers of the vent crab, Xenograpsus testudinatus, which are found in high numbers near the vents and rock crevices, as well as a community of benthic invertebrates-amphipods and sea cucumbers, among others. To understand the major food sources for these various organisms, Chang and colleagues from National Taiwan University collected various samples of crabs, zooplankton, seawater particulate organic matter (POM; small particles consisting of algae and detritus), benthic algae, and vent POM (mainly bacteria). To look at the influence of vents on surrounding organisms’ diets, the researchers collected samples near and far away from the vents.

Upclose of the vent crab. Photo from Raffles Museum News via Wikimedia Commons.

After SCUBA diving to collect samples, the researchers analyzed each of the organisms by measuring their stable isotope ratios of carbon and nitrogen. Stable isotopes are versions of an element in which the number of neutrons differs.  Primary producers, mainly algae, which sit at the bottom of the marine food web, have access to carbon dioxide and nitrogen floating around in the surrounding water; depending on its metabolism, some algae may have a preference for taking in the heavy or light isotope. So, some algae are said to be “enriched” (have more) in the heavy isotope of carbon or nitrogen, while others are “depleted,” the latter meaning that the algae prefers to photosynthesize with the lighter version of carbon. To answer questions about energy flow, marine scientists measure carbon and nitrogen stable isotope ratios, in which minuscule amounts of organism samples are analyzed by a stable isotope mass spectrometer. In this process, the relative proportion of heavy (extra neutrons) and light versions of carbon and nitrogen in the tissues of algae, crabs, zooplankton, and other organisms, can be determined. So, the stable isotopes of carbon and nitrogen serve as a “signature” of a group of algae, and organisms that eat the algae will have carbon and nitrogen isotope signatures very similar to their food source.

What did they find?

By analyzing potential food sources and consumers, the researchers identified three major groups of isotopically distinct food sources: vent POM, seawater POM, and benthic algae. Vent POM contributed roughly half to the diets of benthic crustaceans. Crabs collected closer to the vents had isotope signatures that showed a very strong dependence on vent POM in their diets, while those crabs collected further from the vents had a lower dependence on vent POM. This result is striking because the vent crab was previously thought to feed primarily on sinking zooplankton, regardless of where they dwell. This study sheds light on the importance of vents in contributing to the diets of crabs. This study also showed for the first time that benthic crustaceans, including amphipods, mysid shrimp, and krill, were abundant around the vent ecosystem, and that vent POM constituted half of the diet of these organisms.

Figure of diet composition of the vent crab (left-hand side) and sea anemone (right side) from different sampling locations in the present study. These graphs show that vent POM (black bars) comprised a significant portion of the diets of the crab. Figure is Figure 5 in Chang et al. 2018 via Creative Commons License.

This study revealed the transfer of energy from vent-associated chemosynthesizing bacteria to higher trophic levels. In this hydrothermal vent ecosystem, benthic crustaceans and even zooplankton, fed on chemosynthezing bacteria and photosynthetic algae to varying degrees. In fact, the study found that vent POM contributed as much as 45% to the diet of zooplankton, which suggests that organisms residing primarily in the open water column can feed on bacteria living in the vent fluids. Understanding the multiple energy pathways supporting these consumers is important, especially considering how ocean acidification and pollution inputs to shallow coastal open water zones may negatively impact photosynthesizing algae that float in the water column. The organic matter rising from these vents may be a critical food source for the local benthic and open water invertebrate consumers, which in turn are incorporated into the diets of higher trophic level consumers. More studies on other shallow hydrothermal vent ecosystems are needed, however, to assess how different benthic communities utilize food resources produced from the vents.



No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 11 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com