you're reading...

Alternative Energy

Need help counting bubbles? Now you can use sound!

Paper: Weber TC, Mayer L, Jerram K, et al. (2014) Acoustic estimates of methane gas flux from the seabed in a 6000 km 2 region in the Northern Gulf of Mexico. Geochemistry, Geophysics, Geosystems 15:1911–1925. doi: 10.1002/2014GC005271


Bubbles elicit scenes of childhood summers playing on the front stoop or backyard. On the other hand, put bubbles at the bottom of the ocean and you will find highly educated adults toiling with complicated mathematical equations and state-of-the-art technology.

The bubbles these scientists are trying to quantify are made of methane gas and are seeping out of sections of seafloor worldwide. Methane has either biological or geological origins, and the pathway from seabed to atmosphere is extremely complex. It is a powerful energy resource and a potent green-house gas, but very little is understood about how oceanic methane gas seeps affect the global carbon cycle.

Methane is undersaturated in the deep ocean, so clean methane bubbles are expected to lose much of their mass over several tens of meters as the bubbles disintegrate into the surrounding water. However, the observations in Weber et al. show that these gas seeps are actually rising several hundreds of meters thorough the water column. This seems likely to be a result of the suggested impediment to gas transfer provided by the bubbles’ skin which acts to slow down the rate of gas transfer. The skin is a boundary between the gas inside the bubbles and the surrounding water; it is made of methane hydrate, a cage-like lattice of ice that is only stable under low temperatures and high pressures.

Screen Shot 2014-06-18 at 7.53.06 PM

In Weber et al., many mechanisms that potentially affect gas transfer and the advanced technology used to quantify gas flux are explained in detail. The team collected data from two different mapping systems, a 30kHz multibeam echo sounder (MBES) and an 18 kHz split-beam echo sounder (SBES). The first of these mapping systems is best for efficient mapping and localization of the gas seeps, while the second is best for obtaining absolute acoustic measurements of the seeps. In 2011, the team identified a spatial distribution of a number of seeps in the northern Gulf of Mexico with the MBES, and then acoustically characterized a subset of them with the SBES. The study area was 6000 km2, which is equivalent to less than 0.1% of the current estimate for global seabed methane seepage rates. A year later, Weber et al. returned to the same sites to remap them in case the seeps had undergone any changes.

Additionally, the team used a remotely operated vehicle (ROV) to dive on the seeps to collect footage of bubbles passing a gridded board. The board has squares of a known size which helps better identify the volume of gas in each bubble and the rate at which the bubbles ascend. The bubble video footage was then run through a gamut of computer analyses to produce a precise flux rate. These flux rate measurements were then extrapolated to the entire 2011 survey area, constrained by the SBES acoustic measurements, in order to estimate the bounds on the regional flux of methane gas.

Screen Shot 2014-06-19 at 1.15.40 PM

Screen Shot 2014-06-18 at 5.40.34 PMScreen Shot 2014-06-18 at 5.57.05 PM

The ROV also physically collected bubbles in a clear container. The bubbles were then filmed during the ascent of the ROV to the surface, expanding in volume along the way as the materials were depressurized and temperature increased. The video footage shows the methane in hydrate form (solid looking blue/white material) at ~1000m, then dissociating of the hydrate into free gas starting at ~600m. By ~420m only water and free gas remained.

You can see a wonderful video of the gas collection, hydrate dissociation, and gas expansion here: Methane collection and gas expansion

The direct comparison of acoustically derived and directly observed flux show that relatively accurate estimates of gas flux can be achieved in the deep ocean using shipboard SBES, although not without several generalizations that can account for both over and underestimations.

Yes, the team had to make several assumptions to generate their estimates, such as spherical bubble geometry, constant discharge rates, and pure methane composition. Ultimately, the study was able to show that acoustics can provide a workable dataset for estimating the amount of methane seeping from the global seafloor.



  1. […] time readers may have noticed how often acoustics comes up in the study of the ocean. This is no coincidence and there are a myriad of reasons why. The […]

Post a Comment


  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 8 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 9 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com