//
you're reading...

Chemistry

Oil Spill Sleuths use Chemical Fingerprinting to Identify Sources of Tar Balls

Paper

Suneel, V.; Vethamony, P.; Naik, B. G.; Kumar, K. V.; Sreenu, L.; Samiksha, S. V.; Tai, Y.; Sudheesh, K. “Source investigation of the Tar Balls Deposited along the Gujarat Coast, India, Using Chemical Fingerprinting and Transport Modeling Techniques. Env. Sci. Technol. 2014. DOI: 10.1021/es5032213

What are Tar Balls?

Tar balls accumulating on a Goa beach in India Source: Mayabhushan Nagvenkar, The Associated Press

Tar balls are small globules of thick, sticky oil that can be found on some shorelines. They can occur as a result of offshore oil spills, though in some oil-rich marine environments, natural underwater oil seepage can lead to formation and shoreline deposition of tar balls. Because oil drilling often occurs in these same oil-rich environments, it can be difficult to determine whether tar ball deposition results from human activities or natural processes.

Tar Balls NIO

Various tar balls collected from India’s Goan coast in 2005. Source: National Institute of Oceanography

Tar ball oil is thick and sticky because it has undergone a process called weathering during transit from its source point. After oil enters the water, lighter components of the crude oil (oil released from underground reservoirs that has not been processed or refined in any way) are lost through a process called volatilization (conversion from the liquid to gas phase), and easily degradable components are eaten up by organisms. The more persistent components remain and eventually end up on the shore, often as tar balls. When they wash up, tar balls become hard and crusty on the outside but remain liquid on the inside, offering a nasty, sticky surprise to any beach goer who steps on one.

Tar balls became a highly visible issue in India due to the annual deposition of massive amounts of tar balls on the Goa Coast, which has been ascribed to passing crude oil tankers. The tar balls have hurt tourism by turning beaches unsightly and have threatened local species, including economically important fish species. In addition to being eyesores, tar balls threaten the health of coastal ecosystems, especially in areas where tar ball deposition is extreme. The polycyclic aromatic hydrocarbons (PAHs) that make up a significant fraction of crude oil are associated with elevated cancer risk and other detrimental health effects such as immunosuppression and birth defects.

In order to mitigate tar ball deposition, we need to know where the oil is coming from: Is there a specific offshore oil field to blame? If so, can changes in their operations stop tar ball accumulation on beaches? In this study, researchers used chemical analysis and hydrodynamic modeling to determine where tar balls on the Gujarat coast originated.

Methods & Results

Figure 1: Beaches where samples were collected (Tithal, Maroli, Nargoi, and Umbergaon) are shown in blue. Locations of suspected oil sources are shown in red. Simulated particle release using hydrodynamic modeling was done at each of the locations marked in black. Source: Suneel et al.

Figure 1: Beaches where samples were collected (Tithal, Maroli, Nargoi, and Umbergaon) are shown in blue. Locations of suspected sources are shown in red. Simulated particle release using hydrodynamic modeling was done at the locations marked in black. Source: Suneel et al.

Researchers collected twelve tar ball samples from four beaches, shown in blue in Figure 1. They also obtained samples of crude oils from suspected sources (shown in red in Figure 1) so that they could look for similarities in the chemical “fingerprints” of source oils and deposited tar balls. The suspected source samples were oil from the vessel MSC Chaitra, which collided with another vessel in August 2010, crude oil from the Cairn and Niko oil fields off the Gujarat coast, and crude from two different oil pipelines associated with offshore platforms operated by Bombay High. The researchers combined expertise in physical (hydrodynamic modeling) and chemical oceanography techniques (chemical fingerprinting) to determine which suspected source was the most likely culprit.

Hydrodynamic Modeling: Where Could Tar Balls Have Originated?

At the locations shown in black (P1 – P10) in Figure 1, virtual particles of the same approximate weight as the tar balls were released and transport of the particles was simulated using hydrodynamic modeling to determine whether tar balls released from each location were likely to end up at the sites where samples were collected. They simulated seasonal winds to reconstruct how the currents would have been moving in the four months preceding sample collection and then tracked the predicted trajectories of particles from each particle release location.

Modeled trajectories for particles traveling from the suspected source regions in June and July are shown in Figure 2. Trajectories during these months seemed to deliver particles more effectively to the study area than trajectories for April and May.

Figure 2: Predicted trajectories for particles released from suspected source regions in June and July 2014. Source: Suneel et al.

Figure 2: Predicted trajectories for particles released from suspected source regions in June and July 2014. Source: Suneel et al.

 

Chemical Fingerprinting: Which Crude Oil Best Matches the Tar Balls?

Chemical “fingerprinting” is the practice of measuring certain compounds that can tell researchers about the environment in which the sample originated and weathering processes it has undergone since release. Often, scientists use diagnostic ratios – relative concentrations of one compound to another compound – as unique markers of certain processes.

Here, researchers used a comprehensive battery of tests. They measured the ratios of certain PAHs, which can be used to get some idea of the processes an oil has undergone or where it originated. The ratios of PAHs in the samples suggested that the samples were petrogenic, meaning that the tar balls originated from crude oil, which the researchers had already expected. They also observed that the ratios of PAHs were similar for all of the tar balls collected, which hinted that all tar balls most likely shared a common source.

Secondly, the researchers measured another group of compounds called biomarkers, which are complex organic molecules that are difficult to degrade, often unique to the original type of environment and geological time that was the source of the oil. Biomarkers are the remnants of the ancient dead organisms that degraded over time to form the oil we have today. They found that oleanane was found in all tar balls and most source crudes. This compound usually suggests that an oil was formed from dead plant material in an ancient delta.

Figure 3: Researchers measured concentrations of certain biomarkers compounds in each samples and plotted the ratios of these compounds in order to group similar samples together. All of the tar ball samples were similar to each other (enclosed in the black circle). The most similar source crudes were both from Bombay High. Source: Suneel et al.

Figure 3: Researchers measured concentrations of certain biomarkers compounds in each samples and plotted the ratios of these compounds in order to group similar samples together. All of the tar ball samples were similar to each other (enclosed in the black circle). The most similar source crudes were both from Bombay High. Source: Suneel et al.

They plotted two different ratios of groups of pentacyclic triterpenes, the C29/C30 ratio (ratio of molecules in the group with 29 versus 30 carbon atoms) and the C31-C35/C30 ratio (ratio of molecules in the group with 31 to 35 versus 30 carbon atoms), to see where each tar ball sample and source crude fell on the plot – dots near to each other should be more likely to come from a common source (Figure 3). These procedures allowed the authors to effectively rule out four of the possible source crudes for which they had data: Middle East Crude Oil (MECO) (red X’s), South East Asian Crude Oil (SEACO) (pink triangles), Cairn Oil Field Crude Oil (CRN) (orange diamonds) and oil from the wrecked vessel MSC Chaitra (MSC)  (green circle), which leaves the two Bombay High Crude Oils (BHM and BHH) (pink circles) as the most likely source of tar balls to the Gujarat coast.

Finally, the group used stable carbon isotope ratios to further confirm tar ball sources. The amount of “heavy” 13C to total C (12C + 13C) in various compounds that make up an oil sample is a unique characteristic of crude oil that will not change as the sample weathers. In Figure 4, the ratio of 13C to total C is plotted for organic molecules found in the oil samples. The molecules are organized based on the number of carbons they contain, meaning that the size of the molecules is increasing from C9 to C36. You can see that in most cases the molecules are becoming “isotopically lighter” (they contain less of the heavy 13C) as molecular size increases. This characteristic curve is expected to be similar for samples that come from the same source crude. The data supports the other lines of evidence, showing that oil from the vessel MSC Chaitra is the most distinct and is unlikely to be the source of the tar balls. Source crudes from Cairn (CRN) and Niko (NIK) oil fields are also divergent. The tar ball samples best match the Bombay High crudes (BHH and BHM).

Figure 4: Stable carbon isotope ratios plotted against molecule size for each source crude and tar ball sample. The yellow dotted line represents oil from the vessel MSC Chaitra, an obvious outlier, confirming that this vessel was most likely not the source of the tar balls. Source: Suneel et al.

Figure 4: Stable carbon isotope ratios plotted against molecule size for each source crude and tar ball sample. The yellow dotted line represents oil from the vessel MSC Chaitra, an obvious outlier, confirming that this vessel was most likely not the source of the tar balls. Source: Suneel et al.

Significance

This study showcases many of the powerful tools we can use to answer the essential question  “Where does it come from?” Once we answer this question we can start planning how to stop it.

The researchers report that Bombay High offshore oil platforms are the most likely source of the tar balls being deposited along the Gujarat coast, but they also note that natural seepage from the area can’t be ruled out. If further studies can confirm the source as being spills from the oil sites, it may be possible to mitigate tar ball deposition through site repairs or improvements in operation.

Read more

Tar Balls on Goan Beaches: The National Institute of Oceanography (NIO)

Tar Balls Coat Indian Beaches: CoastalCare.org

BP Oil Spill’s Sticky Remnants: National Geographic

Discussion

One Response to “Oil Spill Sleuths use Chemical Fingerprinting to Identify Sources of Tar Balls”

  1. I did not know that oil underwater can undergo processes and turn into tar balls. Recently learning about these tar balls, this should be a problem that should be eliminated soon. After all, we would not want our beautiful beaches to be tarnished by these disgusting tar balls. Especially, not wanting to step in it because it would be a terrible fate to have to clean up your shoe/foot after breaking through the hard and crusty outer part! It is a brilliant idea to use chemical fingerprinting as a way to find the origins of the oil. But, are there any alternatives to finding the origins of the oil? Also, would it be possible to be stuck in a dilemma in which researchers would have to decide whether the oil originated from more than one possible area? I think this article has greatly enlightened me about tar balls and how researchers are able to find its origin and the processes the oil has gone through.

    Posted by Jaclyn | March 5, 2017, 11:33 pm

Post a Comment

Instagram

  • by oceanbites 3 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com