you're reading...


Sea ice leads cause changes in mercury and ozone levels in the Arctic

Article: Christopher W. Moore, Daniel Obrist, Alexandra Steffen, Ralf M. Staebler, Thomas A. Douglas, Andreas Richter & Son V. Nghiem.  Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice. Nature, Published Online Jan,15, 2014. 1-4   doi: 10.1038/nature12924



In our changing climate, the opening and closing of sea ice is occurring more frequently, resulting from thick perennial Arctic sea ice shifting into thin seasonal ice sheets.  This physical phenomenon can not only affect the energy balance in the Arctic, but can also have some influence on its atmospheric chemistry, involving components such as mercury and ozone.

Mercury and ozone both undergo rapid removal within the Arctic atmospheric boundary layer. Mercury is oxidized from (Hg(0)) to (Hg(II)) while ozone is destroyed. Oxidized mercury is then either deposited in snow and ice or reemitted as elemental mercury from surface into boundary layer via photochemical reduction.



Scientists measured atmospheric levels of mercury and ozone during two field studies over the frozen Chukchi Sea in the Barrow region of Alaska : one in March 2009 and the other in March/April 2012. Using satellite images, they marked the path of air masses that arrived at opening leads over the course of 24 hours.




When air masses moved over consolidated ice area close to Barrow in March 2009, ozone concentrations were very low, showing a depletion reaction. However, when a newly opening lead appeared in the trajectory, ozone concentration increased by three-fold within 1-2 hours. In fact, researchers found significantly higher levels of mercury and ozone when air masses were flowing over the open sea-ice leads.  Concentrations of mercury were also high when traveling over open leads. The same air masses that later flew over the refrozen ice leads presented much lower concentrations of these two compounds. The same patterns of mercury and ozone concentrations linking to the presence or absence of sea ice leads were observed in March/April 2012.

The transition from depleted to elevated mercury and ozone levels is attributed to air flux above sea ice leads. In polar areas, the water tends to be warmer than the atmosphere above. When a lead opens, heat transfers from surface water to the atmosphere due to the temperature gradient.  Then the air above and downwind of the lead gets disturbed and mixed. Some air above the surface layer comes to the bottom with sufficient mercury and ozone. This resupply from air above causes increases in mercury and ozone when passing open leads.



This finding is interesting as it shows a new impact of climate change in Arctic areas. As the number of opening leads increases, additional mercury and ozone may be coming into the atmospheric surface layer more frequently. After they undergo depletion events ozone is destroyed, decreasing the total ozone amount in the atmosphere. It could also increase mercury deposition to snow and ice which could pose a risk to polar animals. It is thought that the same lead-based processes may be observed for other persistent organic pollutants and heavy metals.


No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 11 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com