//
you're reading...

Biogeochemistry

Solving Big Dam Problems

Article:
Tonra, CM , Sager-Fradkin, K, Morley, SA, Duda, JJ, Marra, PP. 2015. The rapid return of marine-derived nutrients to a freshwater food web following dam removal . Biological Conservation, Vol 192, pp. 130-134. doi:10.1016/j.biocon.2015.09.009

Introduction
There are a fair amount of dams in the United States. There’s the Hoover Dam, and… well, the Hoover Dam is probably the only one you know by name unless you live or work near another one. But how many are there in the US? There are 50 states. The coastal states probably have a couple dams each, while the interior states probably have little to none. So, maybe 100 dams total? 500? Try 75,000 (Figure 1)!!! That doesn’t even seem possible. What’s more, over 8,000 of those are considered “major” dams: dams that are over 50 feet tall. With that many dams, everything from a tiny stream to a major main-stem river is likely to have at least one dam on it.

Figure 1 – Major dams in the US: This map shows only the estimated 8,100 major dams (dams over 50 feet tall) in the US. That’s a lot of dams. Photo credit: By Kbh3rd - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=8251354

Figure 1 – Major dams in the US: This map shows only the estimated 8,100 major dams (dams over 50 feet tall) in the US. That’s a lot of dams. Photo credit: By Kbh3rd – Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=8251354

Dams had their heyday in the late 1800’s into the earlier 1900’s. They were built to power mills or to generate electricity. Today, many of those mills do not exist or are not operational, but the dams still remain. Even when not generating power, they still completely alter the flow of nutrients throughout the system. You see, rivers are like the arteries of the world’s ecosystems. Their flowing water is a direct link between the land, freshwater environments like lakes and ponds, and the ocean.

Anadromous Fish
As rivers flow from inland out to the ocean, they export nutrients out of the terrestrial and freshwater environments and into the ocean. Anadromous fish are a rare example of nutrients from the marine environment naturally being delivered to the freshwater environment. Salmon, for example, die after spawning in freshwater leaving a large amount of nutrients originally from the ocean available for a variety of organisms in the freshwater environment. Dams that prevent anadromous fish from reaching upstream portions of a river prevent this vital transportation of nutrients (and also really hurt the populations of anadromous fish).

The Study

Figure 2 – The Elwa dam study site in WA on September 17, 2011(Photo by Ben Cody, https://commons.wikimedia.org/w/index.php?curid=16563772).

Figure 2 – The Elwa dam study site in WA on September 17, 2011(Photo by Ben Cody, https://commons.wikimedia.org/w/index.php?curid=16563772).

If a dam isn’t being used any more, will simply removing it restore a river to its natural state, allowing anadromous fish to return? Removing a dam is usually a pretty serious undertaking resulting in a massive change to the physical environment in a very short amount of time (click here for an amazing time lapse video of a different dam removal in Washington [2mins]). A team of researchers in Washington set out to determine how quickly rivers will rebound after the removal of a 100-year-old dam. The challenge is how to tell if organisms in the freshwater environment are using nutrients that originate in the ocean, after the dam removal (delivered to freshwater by anadromous salmon now that the dam isn’t in their way).

The way to address this type of problem is by using stable isotope analysis. The basic elements of carbon and nitrogen, which make up a large portion of animal tissues, each have two different forms called isotopes. Each of these forms are stable, meaning they will persist in the same form for a long period of time (contrary to radioactive isotopes). Scientists utilize the fact that materials from different areas (ex: ocean and freshwater systems) usually consist of a slightly different make up of these two forms. For example, the ratio of Carbon-12 to Carbon-13 (the two different stable isotopes based on the number of neutrons in the atom) is different in materials derived from the ocean than in materials derived from the freshwater environment. Using this knowledge, the researchers looked for ocean-like carbon and nitrogen signatures in organisms in the freshwater environment before and after the dam removal.

Results

Figure 3 – The site where the Elwha dam once stood. Photo taken on February 14, 2012 (Photo by Ben Cody, https://commons.wikimedia.org/w/index.php?curid=16563772)

Figure 3 – The site where the Elwha dam once stood. Photo taken on February 14, 2012 (Photo by Ben Cody, https://commons.wikimedia.org/w/index.php?curid=16563772)

Since the dam prevented ocean organisms from entering the freshwater system, it was not surprising that there was no evidence of ocean-like nutrients in organisms upstream of the dam before its removal. Less than one year after the dam was removed, salmon returned to the river above where the dam used to be. But did organisms above the dam that have not been exposed to salmon for over 100 years begin to utilize marine derived nutrients? Yup! Marine derived nutrients were found in a small predatory bird, the American dipper after the dam was removed.

 

Conclusion
Although dams can provide energy without generating large amounts of greenhouse gas emissions like the burning of fossil fuels, they are not without environmental consequences. Building a large concrete wall across the river poses an obvious physical barrier to any fish that had plans of swimming through that section of river. Blocking anadromous fish migrations results in ecosystem wide consequences by eliminating the delivery of marine derived nutrients to the system. This study represents just one example of how quickly an ecosystem can respond to a dam removal, once again restoring the natural connection between the land and the ocean. The speed of the turnaround is pretty remarkable. Over 100 years of ecosystem alteration by humans can be restored to a more natural and more functional state in less than one year. This study helps build the case for the value in removing obsolete dams that no longer serve a purpose.

Figure 4 – Upstream of the Elwha dam in October 2012 after dam removal. This used to be a large lake of impounded water behind the dam. Native vegetation is being seeded along the restored river banks. (Photo by By Andy Ritchie from Port Angeles, WA, United States. Cropped and color-corrected by Daniel Case prior to upload, https://commons.wikimedia.org/w/index.php?curid=22407955)

Figure 4 – Upstream of the Elwha dam in October 2012 after dam removal. This used to be a large lake of impounded water behind the dam. Native vegetation is being seeded along the restored river banks. (Photo by By Andy Ritchie from Port Angeles, WA, United States. Cropped and color-corrected by Daniel Case prior to upload, https://commons.wikimedia.org/w/index.php?curid=22407955)

Discussion

Trackbacks/Pingbacks

  1. […] by Sandra Schleier — Original Post by Derrick […]

Post a Comment

Instagram

  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 9 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 9 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com