//
you're reading...

Biology

The Community Conundrum: using models to challenge classic ecological theory

 

 

Article: Leaper, R., et al. (2014). “Do communities exist? Complex patterns of overlapping marine species distributions.” Ecology 95(7): 2016-2025.

doi

Background:

In the early 20th century, two plant ecologists proposed different theories that explained ecological communities. Frederic Clements (1916) (Fig. 1) theorized that communities were governed by laws of succession (meaning the presence of a species or group is determined by the stage of an ecosystem) and that each species had a specific role to play. In this scenario, species presence would be nonrandom and predictable. This would mean that species within communities are highly correlated. Henry Gleason (1917) (Fig. 2), however, theorized that communities were not functionally organized; instead they were random or chance associations of species. Since these two competing theories were developed, scientists have both used and challenged them in countless experiments and models. Currently, it is strongly believed that communities are highly structured and that there are strong interactions between members of a community. On the other hand, many have observed weak interactions within a community, indicating coincidental and individualistic structure. It is important to note that community structure, function, and importance are not being debated; rather, it is the structuring force (or lack thereof) and processes that are being challenged.

Fig. 1: Frederic Clements

Fig. 1: Frederic Clements

Fig. 2: Henry A. Gleason

Fig. 2: Henry A. Gleason

 

Technological advances in computing ability and statistical methods have allowed for the development of complex models, helping us understand natural processes. Here, researchers used a new statistical approach to model how species cluster in an environment, shedding light onto the forces determining community composition.

The Study:

In a 2011 publication, the species archetype model (SAM) was presented as a way to understanding species associations within communities. This model clusters species based on response to the environment; in this case, the response is the presence or absence of a species within an environment. With SAM, species that have a similar response to an environment are grouped into a species archetype (or original pattern from which things are copied). Researchers in this study hypothesized that if species within a community are highly connected, then they should appear together and in the same environments. If species aren’t connected, they will just appear randomly throughout an environment.

Fig. 3: This map shows the survey area located on the southern coast of Australia. Dots represent sampling sites.

Fig. 3: This map shows the survey area located on the southern coast of Australia. Dots represent sampling sites.

The SAM was used with data from species surveys and environmental monitoring from coastal areas in southern Australia (Fig. 3). This part of Australia is heavily studied and is home to many marine protected areas; as a result, there is a lot of information about environmental parameters and species distributions. Researchers surveyed 298 and 320 sites for demersal fish (or fish that live near the bottom) and macroinvertebrate (like lobsters and urchins) assemblages, respectively (Fig. 4). This data, combined with environmental data, was used in creating models that vary in the number of species archetypes and the influence of different environmental factors. Environmental factors used in these models included temperature, nutrients, and oxygen levels, among others.

Overall, 16 different models (for both demersal fish and macroinvertebrates) were created. Without getting too far into the mathematics, each model created varied in the number of species archetypes (ranging from 1 archetype to 20 archetypes, as determined by survey data) as well as how influential environmental factors were. The models vary in their statistical strength and ability to accurately predict community composition. Statistically comparing the models determined which model was the strongest. The model comparison resulted in determining how many species archetypes exist for demersal fish and macroinvertebrates. Models also determined how many species fit into each archetype. It was found that the strongest models for demersal fish came with 6 archetypes and 4 species in each archetype. For macroinvetrebrates, the strongest model came with 8 archetypes and 3 species in each archetype.

Fig. 4: A diver completing a survey.

Fig. 4: A diver completing a survey.

With the strongest model selected and the species archetypes established, researchers were able to look at the environments of their study sites and determine the probability of presence for each archetype (Fig. 5 and 6). Marine environments are not black and white – there is a gradient for many factors – and as a result, they saw quite a bit of overlap between species archetypes, even though researchers were able to define archetypes by environment. This could result in changes in species interactions and community function.

Fig. 5: This figure shows the probability of encountering each demersal fish archetype (represented by each individual graph, a-f) across the survey range.

Fig. 5: This figure shows the probability of encountering each demersal fish archetype (represented by each individual graph, a-f) across the survey range.

Fig. 6: This figure shows the probability of encountering each macroinvertebrate archetype (represented by each individual graph, a-h) across the survey range.

Fig. 6: This figure shows the probability of encountering each macroinvertebrate archetype (represented by each individual graph, a-h) across the survey range.

 

 

 

 

 

 

 

 

 

 

 

 

Significance:

So what does all of this say about communities? Did they get to the bottom of this 100 year old ecological debate? Well, the results of this study don’t pick a clear winner, but they do suggest that there are groups of species (species archetypes) that are highly correlated based on environmental parameters and are nonrandom in their presence, but species interactions are not forming complex webs as theorized by Clements. The SAM approach to species assemblages looks as though it could be a useful tool in predicting the presence or absence of certain species of species archetypes. This could have implications in marine management, whether for commercial or endangered species.

As scientists, we “stand on the shoulders of giants.” We continue to build off of those who came before us and advance our knowledge of the world. Using modern methods and technology, like the SAM, allows us to test the strength and stability of these “shoulders.”

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 8 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 9 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com