//
you're reading...

Ecology

Armored but uninhabited: how beach armoring is altering transitional communities

 

 

Article: Heerhartz, Sarah M., et al. “Shoreline Armoring in an Estuary Constrains Wrack-Associated Invertebrate Communities.” Estuaries and Coasts 39.1 (2016): 171-188.

DOI: 10.1007/s12237-015-9983-x

Hopefully you caught yesterday’s article on protecting shores with a living shoreline, we’ll be talking today about the negative impacts of the “dead” shoreline protections!

Background:

It’s hard to imagine a beach as anything but relaxing and peaceful. But imagine for a second you are a small invertebrate, about 1/500th the height of a human. If that were the case, being on a large sandy beach would be the same as standing in the middle of Death Valley. Not so relaxed anymore, huh?

Fig. 1: Beach wrack. We've all seen it, but maybe we didn't know what it was. These wrack lines exist on beaches throughout the world and have organic input from the sea and the land (flickr.com).

Fig. 1: Beach wrack. We’ve all seen it, but maybe we didn’t know what it was. These wrack lines exist on beaches throughout the world and have organic input from land and sea (flickr.com).

To small organisms, beaches are essentially deserts. Beaches are not productive systems, they aren’t inhabited by a large community of primary producers, but they are surrounded by productivity from land and sea. Therefore, beaches rely on subsidies of organic matter from their surrounding ecosystems. We typically call these subsidies “beach wrack” (Fig. 1). If you’ve been on a beach, you’ve seen beach wrack, but probably didn’t stop to think twice about it. Beach wrack is composed of seaweeds, seagrass, leaves, and wood; a real mix of land and sea influence. To a small beach-dwelling organism, beach wrack is like an oasis in the desert, creating a zone for feeding and shelter. It should be no surprise then, that there are thriving communities of invertebrates inhabiting beach wrack (Fig. 2).

Fig. 2: Talitrid amphipods utilize beach wrack (Photo: Mary Jo Adams).

Fig. 2: Talitrid amphipods utilize beach wrack (Photo: Mary Jo Adams).

As humans, we love our beaches and have made great efforts to preserve them. One of the efforts made in the past few decades is called shoreline armoring where we build or add hard structures to beaches in order to protect them from erosion (Fig. 3). But armoring might have some unintended consequences as they can disrupt the transition from sea to land and alter beach wrack ecosystems. Here, researchers from Puget Sound, WA compared invertebrate beach wrack communities between armored and unarmored beaches.

Fig. 3: Shoreline armoring comes in a variety of ways. Pictured here is armoring via concrete blocks. Other methods include the use of wood or large boulders (Photo: Kitsap Sun).

Fig. 3: Shoreline armoring comes in a variety of ways. Pictured here is armoring via concrete blocks. Other methods include the use of wood or large boulders (Photo: Kitsap Sun).

The Study:

Researchers picked 29 paired armored and unarmored beaches within the Puget Sound where pairs had similar physical characteristics. With their sites chosen, they went out and sampled beach wrack at each site for the presence, abundance, and diversity of organisms present. Invertebrates were sampled by placing 1 meter X 1 meter quadrats (a simple square device that provides a frame for counting things within) along a wrack line. Mobile invertebrates were captured and sampled by creating pitfall traps. In addition to quantifying the communities, researchers also employed PVC tubes filled with wrack material and capped with different mesh sizes to either include or exclude certain invertebrates. PVC tubes were left at sites for 30 days, after which decomposition of the wrack was calculated.

Fig. 4: Survey results of invertebrate communities found in the beach wrack at armored beaches (A) and unarmored beaches (U). You can see that the abundance of Talitrid amphipods and insects are higher at unarmored beaches.

Fig. 4: Survey results of invertebrate communities found in the beach wrack at armored beaches (A) and unarmored beaches (U). You can see that the abundance of Talitrid amphipods and insects are higher at unarmored beaches.

Fig. 5: Results from the pitfall traps for total invertebrates (a) and insects (b). Here, high and low sites at beaches are compared between armored and unarmored beaches, where regardless of height, unarmored beaches have higher abundances.

Fig. 5: Results from the pitfall traps for total invertebrates (a) and insects (b). Here, high and low sites at beaches are compared between armored and unarmored beaches, where regardless of height, unarmored beaches have higher abundances.

 

 

 

 

 

 

 

 

 

Overall, researchers found higher numbers of wrack-associated invertebrates in unarmored beaches as indicated by quadrat sampling (Fig. 4) and pitfall sampling (Fig. 5). When researchers broke down the communities into groups, the trend of greater numbers at unarmored beaches held up, with the exception of aquatic invertebrates in which there were higher numbers at armored beaches. The most striking result was the difference in talitrid amphipods (see Fig. 2) where they were 8.5x more abundant at unarmored beaches! Researchers also found a large number of invertebrate taxa representative of nematodes, beetles, winged insects, molluscs, gastropods, and polychaetes; just to name a few (Fig. 6-8).

Fig. 6: Gammarid amphipods are also found amongst the wrack (Photo: Ingrid Taylar).

Fig. 6: Gammarid amphipods are also found amongst the wrack (Photo: Ingrid Taylar).

Fig. 8: Even beetles can be found in the wrack (Photo: Dave Hubbard).

Fig. 8: Even beetles can be found in the wrack (Photo: Dave Hubbard).

Fig. 7: Isopods also inhabit the beach wrack (Photo: Dave Hubbard).

Fig. 7: Isopods also inhabit the beach wrack (Photo: Dave Hubbard).

 

Decomposition data was only analyzed from unarmored beaches, but an interesting trend was found that showed decomposition rates were significantly higher when fine mesh was used, excluding many invertebrates (Fig. 9).

Fig. 9: The decomposition rates of beach wrack compared between years and between mesh size. You can see that coarse mesh that allows invertebrates in has a much high decomposition rate.

Fig. 9: The decomposition rates of beach wrack compared between years and between mesh size. You can see that coarse mesh that allows invertebrates in has a much high decomposition rate.

The Significance:

We armor beaches with the best intent, but there are unintended consequences that go along with these actions. This research has shown that armoring beaches has a significant and negative impact on beach wrack communities. And while most of us didn’t know these communities even existed, they represent something very important. These researchers have highlighted the amazing amount of connectivity between terrestrial and aquatic ecosystems. In these beach wrack communities lie a diverse collection of organisms that help connect two vastly different systems and help the flow of energy between them. This research has shown that excluding or limiting wrack communities can be detrimental to nutrient cycling. Slower decomposition is not only bad for the communities that depend on a faster cycle but that also means our beaches are going to be covered by wrack for longer periods of time.

My hope is that a study like this opens our eyes to the complexity and connectivity of ecosystems that often goes unnoticed. While there may be casualties in our fight against climate change or in our preservation attempts, we cannot discount the importance of these transitional zones and their inhabitants.

 

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com