//
you're reading...

Chemistry

Beyond CO2: Chemical Consequences of Our Love Affair with Fossil Fuels

The Paper:

González-Gaya, B.; Fernández-Pinos, M.; Morales, L.; Méjanelle, L.; Abad, E.; Piña, B.; Duarte, C. M.; Jiménez, B.; Dachs, J. High atmosphere-ocean exchange of semivolatile aromatic hydrocarbons. Nature Geoscience 9, 438-442, 2016. DOI: 10.1038/ngeo2714

Burn, Baby, Burn

Ever since humankind learned to make fire, people have relied on burning things – to keep warm, cook our food, see at night, and (nowadays) to power our vehicles and charge our cell phones. Our world relies heavily on a process scientists refer to as incomplete combustion, which refers to the burning of biological materials such as wood or fossil fuels, to harness energy. Unfortunately, our appetite for energy comes at a high cost—we now know that fossil fuel combustion releases carbon dioxide (CO2), a greenhouse gas, into the atmosphere, where it warms our planet, alters the chemistry of our oceans, and perturbs the global carbon cycle.

Just as charred wood is left behind after your campfire has burnt out, chemical remnants besides CO¬2, such as PAHs, are formed as byproducts when we burn fuels incompletely. Source: Kai Schreiber via Flickr, used under Creative Commons license

Just as charred wood is left behind after your campfire has burnt out, chemical remnants besides CO¬2, such as PAHs, are formed as byproducts when we burn fuels incompletely. Source: Kai Schreiber via Flickr, used under Creative Commons license

While we all know that CO2 is a harmful byproduct of burning fuel, it’s not the only chemical formed during this process. CO2 forms when complete combustion of organic material occurs – there are many other chemicals that are also formed during incomplete combustion. Just as charred pieces of wood are left behind after your campfire has cooled, chemical remnants are left behind when we burn wood, petroleum, coal, or even when we char a steak on the barbeque. We’ve been releasing these byproducts into the environment in increasingly large amounts as we’ve built more cities, driven more cars, and demanded more and more electricity, but we don’t know much about their effects on the cycling of carbon through our air and oceans.

Chemical structures of a few polycyclic aromatic hydrocarbons (PAHs). Source: Wikipedia.

Chemical structures of a few polycyclic aromatic hydrocarbons (PAHs). Source: Wikipedia.

Polycyclic aromatic hydrocarbons, or PAHs, are one class of chemical released whenever organic material is burnt. PAHs can come in a wide variety of shapes and sizes, but all feature the same building block—the aromatic benzene ring. PAHs are also released in large amounts episodically when oil spills occur, and they’re produced as a result of natural events like forest fires and volcanic eruptions. Natural or not, PAHs aren’t harmless –they’re considered the main cancer-causing component of urban air pollution.

Like humans, animals, and other organic matter, PAHs are mostly made from carbon, the currency of all life on Earth. When we burn carbon for energy, we don’t destroy the actual carbon – the chemical byproducts of combustion become vehicles delivering that carbon back into global reservoirs, including the ocean. Carbon dioxide is the main compound perturbing global cycles because such a large amount of it is being produced compared to other compounds – PAHs released from human activities are usually considered minor components of carbon we’re releasing into the air. However, they may play a bigger and more complex role in the chemistry of our world than we had previously thought. In this study, researchers traveled the world measuring PAHs in air and water samples from three different ocean basins to learn more about the PAHs we’re depositing into the oceans.

Circumnavigation for Science

The Malaspina 2010 Circumnavigation Expedition was an ambitious voyage involving hundreds of researchers from around the world, whose purpose to collect tens of thousands of precious air, water, and biological samples from the world’s oceans. The expedition provided a unique opportunity for researchers to conduct extensive air and water sampling across multiple ocean basins.

In this study, scientists measured 64 different PAHs in air and seawater samples from the Atlantic, Pacific, and Indian Oceans. By measuring the levels of these chemicals in air and water, they could calculate the rates at which PAHs were being deposited into the ocean’s surface from the air. However, they realized that measuring each chemical individually wasn’t going to give them a good idea of how the thousands of chemicals in their samples might be impacting the Earth’s chemistry, so they also developed a way to extract the aromatic fraction of their samples, which contained PAHs as well as other related compounds, and measured the total amount of all of these compounds in each sample as a lump sum.

Caption: The graph above shows signals (peaks) produced when PAHs are related compounds are detected using a gas-chromatograph/mass spectrometer (GC/MS). The red line shows the peaks found when researchers only looked for 64 known PAHs, and the blue line also includes all of the related compounds in the sample that the researchers didn’t specifically target. Source: Gonzalez-Gaya et al., Nature Geoscience 2016.

The graph above shows signals (peaks) produced when PAHs are related compounds are detected using a gas-chromatograph/mass spectrometer (GC/MS). The red line shows the peaks found when researchers only looked for 64 known PAHs, and the blue line also includes all of the related compounds in the sample that the researchers didn’t specifically target. Reprinted by permission from Macmillan Publishers Ltd: Nature Geoscience (Gonzalez-Gaya et al.), copyright 2016.

How Do PAHs End Up in the Oceans?

Researchers in this study collected samples to investigate three different ways that PAHs can be delivered to ocean waters, namely, dry deposition, wet deposition, and gaseous absorption. Dry deposition refers to the settling of particles from the air into surface water – much like how ash can be blown from your campfire and land far away, PAHs are often glommed together on very small particles that can travel great distances before finally depositing. Wet deposition is a similar process, but occurs when it rains and many particles are scavenged from the air and deposited in the ocean. Gaseous absorption, usually considered to be a much more minor input route, occurs when individual PAHs in the gas-phase (not glommed to particles) are absorbed into surface waters from the air via diffusion.

Fluxes of PAHs (in tonnes per month) delivered to the surface oceans via gaseous absorption (top plot, FAW) and dry deposition (bottom plot, FDD). Dry deposition tends to deliver more of the PAHs on the right of the plot, which are larger molecules, because they more readily glom onto particles in the air. Gaseous absorption delivers more of the smaller PAH molecules into the water, and is responsible for a much larger input of PAHs into the oceans than was expected. Positive bars in the absorption plot represent volatilization (loss of molecules escaping from the water’s surface into the air), while negative bars represent absorption. Source: Gonzalez-Gaya et al., Nature Geoscience 2016.

Fluxes of PAHs (in tonnes per month) delivered to the surface oceans via gaseous absorption (top plot, FAW) and dry deposition (bottom plot, FDD). Dry deposition tends to deliver more of the PAHs on the right of the plot, which are larger molecules, because they more readily glom onto particles in the air. Gaseous absorption delivers more of the smaller PAH molecules into the water, and is responsible for a much larger input of PAHs into the oceans than was expected. Positive bars in the absorption plot represent volatilization (loss of molecules escaping from the water’s surface into the air), while negative bars represent absorption. Reprinted by permission from MacMillan Publishers Ltd: Nature Geoscience (Gonzalez-Gaya et al.), copyright 2016.

Usually, dry deposition is considered the major route for PAHs to enter surface waters, but this study found that absorption was actually more important, resulting in 90 times greater PAH inputs than dry deposition. Total global inputs from gaseous absorption during one month were 4 times greater than the total amount of PAHs estimated to have entered the water during Deepwater Horizon.

Granted, the numbers presented in this study are for PAHs are being deposited over the whole globe rather than in one region as in an oil spill, but the study drives home the point that this is not a trivial source of carbon; especially when we consider that these numbers were estimated using only data from the targeted PAHs measured in this study. The total amount of related compounds being deposited could be 100-1000 times greater than what the researchers were able to directly measure.

The authors estimate that global deposition of PAHs and related aromatic compounds results in inputs of carbon around 15% of those from CO2, which highlights these compounds as important targets of further study – what effects might they be having on our oceans and the life within them?

What Now?

Scientists are still only scratching the surface of what this study’s findings mean for the health of our oceans. The authors raise some interesting questions based on their results; two of the main ones were:

  • Might PAHs be affecting the bacterial composition of the oceans, or might continuing inputs of PAHs “train” those bacteria to become better at degrading these chemicals? PAHs are naturally degraded by bacteria in seawater. For this reason, our steady inputs of PAHs into ocean waters over decades could be an important source of food helping certain bacterial species in thrive. Our prolonged inputs of PAHs into surface waters in remote open ocean waters where food is scarce may even have helped to condition bacteria to become adept at breaking down PAHs – something we know they are capable of doing in the event of an oil spill. Have we been training bacteria to clean up our messes?
  • What are PAHs doing to marine wildlife? Some PAHs can bioaccumulate, meaning that as we produce more and more of these chemicals, they will end up in living things, such as fish and marine mammals, at increasing levels. This is worrisome because we know some PAHs cause cancer, and they could cause serious consequences for the health of ocean life that we aren’t yet able to measure or understand.

More on PAHs

Want to learn more about PAHs in the ocean? Check out these past Oceanbites posts:

Cohos in Dirty Water: Salmon and Pollution

The Dirty Blizzard: how oil from the Deepwater Horizon spill reached the seafloor

Oil Spill Sleuths use Chemical Fingerprinting to Identify Sources of Tar Balls

Sea sponges soak up pollutants

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 3 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com