you're reading...

Climate Change

Can Coral Reefs Strangled By Algae Recover?

“Experimental support for alternative attractors on coral reefs”, Russell J. Schmitt, Sally J. Holbrook, Samantha L. Davis, Andrew J.Brooks, Thomas C. Adam, Proceedings of the National Academy of Sciences Mar 2019, 116 (10) 4372-4381; DOI: 10.1073/pnas.1812412116


This article was reposted from March 2019.


Why Too Much Algae Hurts Coral Reefs

Coral wages a constant battle against algae for space and dominance. On a healthy coral reef, it’s a battle that the coral mostly wins.

But in recent decades, scientists and reef managers have noticed with alarm that entire coral reef ecosystems have been overgrown by algae. Familiar, colorful coral reefs quickly became unrecognizable, with only the algae-coated outlines of dead coral hinting at the reef’s former bounty. Warming waters, agricultural pollution, or overfishing can all cause this sudden shift to algae dominance, but it’s often a combination of factors that tip the scales in favor of the algae.

Coral reefs have declined worldwide because of a number of threats, including being overrun by macroalgae (algae that can be seen with the naked eye, i.e. seaweed) if there are too many nutrients or not enough algae-eating fish in the ecosystem. This switch from a coral dominated ecosystem to an algae dominated one is called a phase shift. (Image by joakant on Pixabay)

This abrupt change in ecosystem type is called a phase shift, and a big part of conserving coral reefs is predicting when it might happen to a particular reef—and how to prevent it. A recent study in Moorea, French Polynesia helps us better understand how and why coral-algal phase shifts happen.

A Fragile Balance

Imagine a marble balanced on top of a hill. If you nudge it gently, it will roll down the hill, but once at the bottom it becomes much harder to return the marble to the top. Coral reefs that are overtaken by algae face a similar problem—once the ecosystem has slipped into algae-dominance, it’s much harder to get a healthy coral reef back.

A phase shift can be imagined like a marble (or an ecosystem) balanced on top of a hill. A stressed coral reef might only need a small push to fall onto the side of the dotted line where algae dominates. Nudging this marble slightly to the right (by making the environment slightly worse for the coral or slightly better for the algae) would make the marble roll into the basin where algae dominates. Once there, it would take a lot more effort to get the marble back onto the coral-dominant side of the hill, where a coral reef can exist.

To learn more, scientists used two distinct parts of a coral reef in Moorea as a natural laboratory. The coral growing on Moorea’s forereef, or the side of the reef closer to the ocean, had been very resilient and remained strong across years of natural disturbances. In the lagoon, however, patches of the reef had historically succumbed to algae after disturbances. The researchers used both the lagoon and forereef to test how they handled disturbances.

In certain conditions, either coral or algae can dominate an ecosystem (the space on the hill between the two dashed lines). However, the scientists in this study found that the ecosystem doesn’t switch back until it crosses both dashed lines. That means that if algae have taken over what used to be a coral reef, algae will dominate the ecosystem until conditions go all the way back across the dashed line on the left.

Testing the Reef

To imitate an overfished coral reef, the researchers set up cages with different sized holes over portions of the reef. Small holes excluded larger algae-munching fish from swimming inside. Half of the cages contained coral, while half went over algae. At the end of the experiment, the scientists realized that it was not just the hole size of the cages affecting whether or not algae grew inside, but whether the cage had started off with coral or algae inside.

The researchers also tested how patches of the forereef and lagoon would react to algae removal. They removed either all, some, or none of a common type of algae (Turbinaria) from the experimental sites, then tracked whether it grew back over several years. The healthy, algae-eating fish population on the forereef ensured that the algae didn’t grow back on those test sites. In the lagoon, Turbinaria made a full recovery within a year at the sites where some of it had been removed. It was only at sites where they had  completely removed algae from the lagoon that it didn’t grow back right away. 

A Tool for Better Management?

The study confirmed what scientists had previously suspected but been unable to test: that returning an area to the exact same environmental conditions before algae took over often isn’t enough to bring back a coral reef. In the hill analogy, it isn’t enough to push the ecosystem (marble) to the top. You have to push it over the top and then further down the other side for the ecosystem to have a chance to flip back.

Facing challenges like ocean acidification, a warming ocean, and overfishing mean that coral reefs need all the extra help they can get. Needing to recover coral reefs overrun by algae may sound like yet more bad news on an endless list of problems facing coral reefs.

Moorea, French Polynesia, where the reef served as a natural laboratory (Image by Mariamichelle on Pixabay)



But the study authors hope that the opposite may be true.

If managers and scientists can predict the range of conditions where either coral or algae can dominate (where the dotted lines are on the hill for a particular reef), they’ll be better armed to protect existing coral reefs and even help recovery when possible. That way, we can focus on preserving the coral reefs most likely to resist an algae-takeover.




No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 7 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 10 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com