you're reading...

Book Review

Christmas Tree….. Worms?

‘Tis the season for all things bright, colorful and decorative, and that makes me think of Christmas Tree Worms! Christmas Tree Worms, or Spirobranchus spp., are tube-building polychaetes (family Serpulidae) so-named for their distinctive color and shape. They are a favorite of diverse and underwater photographers alike. If you haven’t seen them in person or in photographs, perhaps you remember them from childhood favorites like Finding Dory or The Little Mermaid: they are the workhorse of the ‘underwater wonderland’ animator, as they retract their conical, ciliated gills in response to a curious poke.

Despite their minor celebrity status in photography and movies, they are not well represented in recent scientific literature, so my gift to you this holiday season is a review of what we have learned recently about Christmas Tree Worms for those of us who are land-bound this December.

Symbiotic Invertebrates

Spirobranchus larvae settle on the surface of a large number of hard coral species, building a calcareous tube which is generally overgrown by the coral as it itself grows larger. Large numbers of these worms can inhabit larger corals, sustaining themselves for as many as 40 years, even if the coral is itself harmed. A 2016 paper by Hoeksema et. al. found that worms inhabiting coral overgrown by a sponge in the Red Sea were seemingly unharmed, and in fact virtually indistinguishable from worms established nearby where the sponge had not yet reached.[1] Another  study from the same team, this time in the Caribbean, found similar patterns when the invading invertebrate was an octocoral (a group of soft corals) – the worm had merely extended its tube through the base of the octocoral, and was again unharmed![2]

But what type: Commensalist, Mutualist or Parasite?

Symbiotic relationships come in three major types: mutualism (where both partners are benefited by the actions of the other); commensalism (where one partner is benefited while the other is neither helped nor harmed); and parasitism (where one partner negatively impacts the other while benefiting itself). So, how is Spirobranchus classified?

Christmas tree worms with spiny operculum making contact with the coral head in the foreground. In the background, you can see the white discoloration indicating damage to the coral. This photo and cover photo by Nick Hobgood (via Wikipedia)


Spirobranchus’ operculum (the ‘trap-door’ that closes many polychaete tubes at the top) has ‘antler-shaped’ spines – I know! That’s how they’re described in the literature – I swear! These spines are frequently covered with filamentous algae, which is known to be destructive to corals. This is problematic because when the gills are extended and the operculum is open, these spines make contact with the coral surface (see photo), visibly damaging the coral tissue. So, is the damage caused by the operculum (and therefore the worm) or the filamentous algae? Some recent studies[3],[4] have taken this on.

Filamentous algae (Boodlea) growing on a reef in Hawaii. http://noaacred.blogspot.com


In each of six different coral species sampled in Curacao, comparisons of opercula causing damage with and without filamentous algae were all not significant, making it pretty clear that the injury to the coral is from the operculum and its spines, not the algae. That being said, filamentous algae are well documented as harmful to coral, and injury can add to a coral’s susceptibility to algae influx.

This stands in stark contrast to the other paper by the same laboratory, conducted in the Gulf of Thailand. Two Porites species sampled here had significantly more damage from filamentous algae-laden opercula than from clean opercula (The other two coral species sampled had non-significant comparisons.) 60% of sampled P. lobata were visibly damaged by algae-laden Christmas tree worms, making this a potentially major (and significantly under-estimated) negative impact to corals. The authors point out that previous studies tend to recite a single paper claiming benefit to coral from Christmas tree worms, from increased water circulation and protection from predation. Given the variety in the data, and the dependence on limited previous research, they suggest that more research is needed. Given the paucity of recent studies available to include here, I have to agree!

So Much More to Unwrap: The Future of Research on Christmas Tree Worms

Corals are under intense pressure from climate change, fishing pressures, habitat degradation, sunscreens and plastics pollution, among other issues. Filamentous algae are sometimes associated with corals in diseased states, and it has been theorized that they facilitate the invasion of the pathogenic microbes. A group out of Australia has shown that degraded coral reefs changes the olfactory cues received by coral-reef fish.[5] Field experiments on damselfishes showed that juvenile fish were unable to detect alarm odors within two meters of degraded coral, but were able to detect them within 20-40 min after they were transferred back to healthy coral. Perhaps in the future we may see what was previously commensalism between Christmas tree worms and coral morph into a parasitic relationship, where the damage caused by a worm’s operculum and its accompanying filamentous algae is worsened by increasing environmental pressures. A gift we won’t be able to put back in the box.


[1] Hoeksema, BW, ten Hove, HA and ML Berumen. 2016. Christmas tree worms evade smothering by a coral-killing sponge in the Red Sea. Marine Biodiversity, 48: 15-16. DOI 10.1007/s12526-015-0339-3.

[2] Hoeksema, BW, Lau, YW and HA ten Hove. 2015. Octocorals as secondary hosts for Christmas tree worms off Curacao. Bulletin of Marine Science¸ 91(4): 489-490. http://dx.doi.org/10.5343/bms.2015.1049

[3]Hoeksema, BW et al. 2019. Filamentous turf algae on tube worms intensify damage in massive Porites corals. Ecology, 100(6), e02668.

[4] Hoeksema, BW et al. 2019. Coral injuries caused by Spirobranchus opercula with and without epibiotic turf algae at Curacao. Marine Biology, 166(5): 60.

[5] McCormick, MI, Barry, RP and BJM Allan. 2017. Algae associated with coral degradation affects risk assessment in coral reef fishes. Scientific Reports, 7(1): 16937. doi: 10.1038/s41598-017-17197-1


No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com