//
you're reading...

Book Review

Species respond differently to climate shifts over time

Article

Schmidt, A. E., L. W. Botsford, J. M. Eadie, R. W. Bradley, E. Di Lorenzo, J. Jahncke. 2014. Non-stationary seabird responses reveal shifting ENSO dynamics in the northeast Pacific. Mar Ecol Prog Ser 499: 249-258. DOI:10.3354/meps10629

Background

Biological productivity in the North Pacific undergoes changes closely associated with large-scale climate phenomena such as El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO). However, the relationships between biological and physical variables over time are not as simple as they seem. One such example is the relationship between seabird reproductive success and the shift in eastern Pacific El Niño to central Pacific El Niño events (Figure 1). To examine these complex dynamics, researchers studied common seabirds found along the central coast of California to determine if pelagic marine food webs respond to physical drivers the same way as they did in the past.

Figure 1. Flavors of ENSO including (a) Eastern Pacific El Nino, (c) Eastern Pacific La Nina, (b) Central Pacific El Nino and (d) central Pacific La Nina. Differences between ENSO types reflect where warm or cool anomalies persist. [www.enso.info]

Figure 1. Flavors of ENSO including (a) Eastern Pacific El Nino, (c) Eastern Pacific La Nina, (b) Central Pacific El Nino and (d) central Pacific La Nina. Differences between ENSO types reflect where warm or cool anomalies persist. [www.enso.info]

Methods

The authors collected 40 years of seabird ecology data from the Farallon Islands off central California to study the relationships between seabird reproductive success and environmental conditions. Two species of seabirds were examined, the Cassin’s auklet Ptycoramphus aleuticus and Brandt’s cormorant Phalacrococrax penicillatus (Figure 2). The authors chose these two species because they prey on animals at different levels in the food web. Cassin’s auklet feeds primarily on krill, while Brandt’s cormorant feeds on a variety of small, juvenile fish species like rockfish and anchovy. The annual reproductive successes of these birds are known to respond rapidly to the availability of their prey.

 

Figure 2. Cassin’s auklet left [Wikipedia] and Brandt’s cormorant right [friendsoflajollashores.com]

Figure 2. Cassin’s auklet left [Wikipedia] and Brandt’s cormorant right [friendsoflajollashores.com]

The authors look at correlations between seabird reproductive success and ocean conditions (Figure 3). This study defines reproductive success among seabirds as the mean number of chicks fledglings per breeding attempt. Ocean variables include sea surface temperature, sea level height and an index of cold, deep water upwelled to the surface (coastal upwelling). Seabird reproductive success was also correlated with Pacific variability such as ENSO, PDO and NPGO.

Figure 3. Relationships between biological and physical variables leading to a change in reproductive sucess of two common seabird species found off central California. Dotted lines show the relationships of primary interest in this study.

Figure 3. Relationships between biological and physical variables leading to a change in reproductive success of two common seabird species found off central California. Dotted lines show the relationships of primary interest in this study.

Findings

Relationships between reproductive success and ocean variables were highly variable. In the mid-1970s, reproductive success was greatest during La Niña conditions when coastal upwelling was enhanced along California and sea level height and sea surface temperatures were below normal (Figure 4). However, the effect of ENSO on seabirds off California may be weakening, while the effects of NPGO appear to increase.

 

Observed changes in seabird reproductive success suggest changes in the availability of prey lower in the food web. Food web structure in the mid-1990s suggests that changes were primarily driven by NPGO climate conditions rather than seabird prey abundance (Figure 4). This mechanism is likely controlled by a change in the timing of seasonal upwelling in the California Current system that is linked to NPGO.

Figure 4. The middle and top bars show the relationship of each species with the dominant modes of ocean variability (ENO and NPGO). The bottom bar shows the correlation between the two seabirds.
Figure 4. The middle and top bars show the relationship of each species with the dominant modes of ocean variability (ENO and NPGO). The bottom bar shows the correlation between the two seabirds.

The authors found correlations between food web dynamics and large-scale climate variability change over time, and the complex behavior of ENSO and NPGO are driving these patterns. The NPGO has strengthened in recent decades, while ENSO has shifted from eastern to central Pacific events.

Significance

Understanding how populations of marine species respond to environmental variability is essential for managing and predicting consequences of future climate change. Recently, ENSO has increased in frequency and shifted from eastern to central Pacific events. Central Pacific ENSO is connected to the variability of NPGO through changes in atmospheric circulation. Thus, a changing response in seabird reproduction may be linked to the recent changes in ENSO and intensification of NPGO. The bio-physical interactions in the North Pacific remain incredibly complex and this study shows that predictions based on correlations that remain the same in time may be inappropriate for describing the how certain species will respond to climate variability in the North Pacific in the future.

 

Discussion

Trackbacks/Pingbacks

  1. […] […]

Post a Comment

Instagram

  • by oceanbites 3 days ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 1 week ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 2 weeks ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 2 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 3 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 4 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 4 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 4 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 5 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 6 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 6 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 7 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 7 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
  • by oceanbites 8 months ago
    Today is the day of  #shutdownacademia  and  #shutdownstem  and many of us at the Oceanbites team are taking the day to plan solid actions for how we can make our organization and the institutions we work at a better place
  • by oceanbites 8 months ago
    Black lives matter. The recent murders of Ahmaud Arbery, Breonna Taylor, and George Floyd have once again brought to light the racism in our country. All of us at Oceanbites stand with our Black colleagues, friends, readers, and family. The
WP2Social Auto Publish Powered By : XYZScripts.com