//
you're reading...

Biology

Home is Where the Lagoon is: how highly mobile manta rays rely on specific habitats

 

Article: McCauley, D., et al. (2014). “Reliance of mobile species on sensitive habitats: a case study of manta rays (Manta alfredi) and lagoons.” Marine Biology: 1-12.

DOI: 10.1007/s00227-014-2478-7

 

Background:

It is typically thought that anthropogenic change (or human induced change) is going to have the biggest impact on sessile, or non-moving, species; after all, they can’t just pick up and leave if their habitat becomes unsuitable. However, researchers are starting to recognize that highly mobile species may be just as susceptible to climate and anthropogenic change. For example, animals traveling between habitats have an increased probability of encountering areas that are affected by change.

Our oceanic ecosystems contain many highly mobile, nomadic species like whales, tuna, sharks, and manta rays. These organisms are constantly patrolling the ocean but often take pit stops at islands and atolls to rest, feed, mate, and escape predation. This behavior is well documented in many marine species, but we have yet to quantify just how important these habitats are.

Fig. 1: Manta rays (Manta alfredi) swim with their mouths open in order to filter feed.

Fig. 1: Manta rays (Manta alfredi) swim with their mouths open in order to filter feed.

Fig. 2: Manta rays often need to be cleaned and have established relationships with reef fish who can help them out.

Fig. 2: Manta rays often need to be cleaned and have established relationships with reef fish who can help them out.

 

 

 

 

 

 

 

 

Manta rays are large elasmobranchs, or cartilaginous fish, like sharks. The reef manta ray, Manta alfredi, can have a wingspan (fin-span) of up to 18 feet (Figs 1 and 2). Despite their large size, they glide gracefully through the water, filter-feeding for small prey like zooplankton and krill. This species of manta ray has been observed in a variety of habitats and is known to travel distances greater than 100 km. Manta alfredi is known to use open ocean habitat as well as atolls and lagoons. As a result, researchers used this species in a case study to determine the reliance of mobile organisms on lagoon habitats.

Palmyra Atoll

Fig. 3: Palmyra Atoll with lagoons.

Fig. 4: The location of the Palmyra Atoll.

Fig. 4: The location of the Palmyra Atoll.

 

 

 

 

 

 

 

The Study:

In the middle of the Pacific Ocean is the Palmyra Atoll (Fig 3 and 4). This atoll’s lagoons and surrounding waters have been protected as a US National Wildlife Refuge since 2001. This site was chosen by researchers to investigate how Manta alfredi utilize these habitats. The lagoons provide refuge, food, and a place for juveniles to grow. In order to assess how important the lagoons are to mobile species, the following questions were proposed and a variety of techniques were used to answer them:

1. What percent of a manta ray’s diet is made up of food from the lagoon?

Stable isotope analysis was used to answer this question. Food from different locations will have varying isotopic ratios (variants of chemical elements). Using muscle tissue from rays, researchers analyzed the isotope ratios and were able to determine where the rays’ food came from.

2. How do manta rays use space within the lagoons?

Manta rays were tagged and tracked with acoustic transmitters. This allowed researchers to determine where in the water column the rays were and provide insight as to how they utilize lagoon space.

3. How do manta rays move between the lagoon and the open ocean?

Using sonar, researchers were able to track the movement of individuals and large populations moving between the two habitat types.

4. What are the population characteristics of manta rays using the lagoons?

A combination of photography and lasers allowed researchers to gather images of individual manta rays, determine the sex, and determine the size. Lasers were used calibrate photographs.

Results:

It was found that lagoons provide about 80% of a manta ray’s diet, compared to  only 20% from the open ocean (Fig 4). Acoustic tracking of rays indicated that individuals spent most of their time in the upper 10m of the water but would migrate up and down throughout the day. It was found that rays typically utilized a core space (or where they spend the majority of their time) of 0.02 km2 – 0.32km2.  Manta rays were found in the main channel between the open ocean and the lagoons regardless of the time of day or the tide, suggesting that there is always movement between the two habitats. Finally, photographic methods were able to detect individuals, their size, and their sex (Fig 5). As a result, researchers were able to tell how often new rays entered the lagoon and how often rays returned. There were a large number of individuals that returned to the same location.

Fig. 6: One of the images researchers were able to capture of the moving mantas.

Fig. 6: One of the images researchers were able to capture of the moving mantas.

Fig. 5: This graph shows where the manta rays are feeding and the percentage of their diet coming from each location. Red represents food from the lagoon (80%) and blue represents food from off shore (20%).

Fig. 5: This graph shows where the manta rays are feeding and the percentage of their diet coming from each location. Red represents food from the lagoon (80%) and blue represents food from off shore (20%).

 

 

 

 

 

 

 

 

 

 

The Significance:

It has been known for some time that mobile species use these habitats for shelter and food, but the actual importance and utilization had yet to be quantified. This study has begun to piece this together. By showing that a huge proportion of manta ray diet comes from this habitat and the documentation of large numbers of returning individuals indicates that these habitats are not just a place to stop; they are vital habitats for mobile species that can act as a home base.

Atolls and islands are highly vulnerable to human impacts. These sites can be heavily fished and are exposed to large amounts of ship traffic. By quantifying the utilization of these habitats by mobile species like manta rays, we now know just how important they are. Studies like this will hopefully lead to increased protection of these habitats and further monitoring of movement behaviors. Understanding where mobile species travel and how they utilize different habitats will allow for a more complete conservation efforts. If these sites become altered by humans or climate change they will likely lose the services they provide mobile species with, and in such vast oceans, the effects of losing these habitats would be catastrophic.

 

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com