//
you're reading...

Biology

Intense Weight Loss by Migratory Humpback Whales Could Increase Health Risks Posed by Pollutants

 

Article: Bengston Nash, S. M.; Waugh, C. A.; Schlabach, M. Metabolic concentration of lipid soluble organochlorine burdens in the blubber of southern hemisphere humpback whales through migration and fasting. 2013. Environ. Sci. Technol. DOI: 10.1021/es401441n

In this study, researchers from Australia and Norway set out to determine whether extreme weight loss increases levels of certain toxic environmental pollutants in the fat of migrating whales, and what implications this could have for their health and reproductive success. To do this, they measured levels of pollutants in the skin and blubber of migrating southern hemisphere humpback whales at two different time points during their 9-month migration: once when the whales were beginning their journey and presumably well fed, and then again when the whales were returning to their feeding grounds after considerable weight loss.

Background Information

Many marine species are known to undertake arduous annual migrations from one region of the ocean to another. In many cases, they cease eating and travel long distances without rest in order to reach more favorable locations for breeding or feeding. Southern hemisphere humpback whales migrate up to 10,000 km (6,214 miles) every year between feeding grounds in Antarctica and equatorial breeding grounds.  During their journey, they can lose an estimated 13% of their body mass (that’s about 3.35 tons – the weight of about 3 cars, or half an elephant)!

Scientists have known for some time that man-made organic compounds like pesticides, pharmaceuticals, and flame retardants do not degrade in the environment and are attracted to materials like fat, leading to bioaccumulation and biomagnification. Essentially, this means that toxic organic pollutants accumulate in wildlife over time and long-lived, fatty species like whales are especially vulnerable.

Theoretically, weight loss should lead to the release of contaminants stored in burned fat. The released compounds would then most likely re-accumulate in different fat stores, increasing the concentrations in the animal’s remaining fat deposits. During this time of release and re-exposure to previously accumulated pollutants, researchers believe that these pollutants could cause health effects such as hormonal disruption.

Sample Collection and Analysis

The researchers caught up with the group of humpbacks twice on their known migration path and took samples of blubber from 22 whales during the early stages of migration, and 33 whales on the return trip. They only took samples from males to avoid interferences from other factors affecting the fat content of females, such as body changes due to pregnancy and lactation. They analyzed these samples for a list of common current use and banned pollutants known to accumulate in wildlife. Specifically, they measured certain organic pesticides as well as a group of contaminants banned in the ‘70s called polychlorinated biphenyls (PCBs). By comparing concentrations of pollutants in the whales’ flesh during early and late migration, they could determine whether extreme weight loss led to a change in pollutant levels.

Findings

Bengston Nash Figure 2

Concentration indices compare levels of each contaminant during early and late migration. A positive number means concentrations were higher later in the journey.

The southern hemisphere whales in this study had significantly lower levels of PCBs and most pesticides in their fat than northern hemisphere humpbacks. Researchers believe this is because whales in the northern hemisphere are in closer proximity to highly developed regions of the world, where levels of pollutants are generally higher.   Hexachlorobenzene, a widely used (and now banned) pesticide that can negatively affect the immune system and disrupt hormonal pathways, was found at the highest levels of all compounds measured.

When researchers compared pollutant concentrations at the beginning and end of the whales’ journey, they found that levels of many compounds increased over time, as expected. This suggests that the pollutants were indeed released from burned fat and re-accumulated in remaining fat deposits.  However, levels of a few pesticides decreased. This may mean that for certain compounds, some fraction of the remobilized pollutants will not re-accumulate in remaining fat stores, but will instead be broken down and eliminated. More research is needed to determine the health consequences of this remobilization.

Significance

This study highlights the importance of considering a species’ life cycle when assessing risks posed by marine pollution. The authors state that remobilization of pollutants in humpbacks could be especially concerning because breeding and fasting occur during the same season. This means weight loss could increase exposure to toxins during the most crucial and vulnerable point in the whales’ life cycles – reproduction and early embryo development. The findings have implications for many other aquatic species that undergo intense migrations, including other whale species, salmon, and seals.

Discussion

Trackbacks/Pingbacks

  1. […] at the top of the food chain at greatest risk due to bioaccumulation, much like the aforementioned pollutants in humpback whales that you read about last […]

Post a Comment

Instagram

  • by oceanbites 3 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com