//
you're reading...

Chemistry

SURFO SPECIAL: Flame retardants: Not as friendly as we like to think

Each summer, the University of Rhode Island Graduate School of Oceanography (GSO) hosts undergraduate students from all over the country to participate in oceanographic research. These Summer Undergraduate Research Fellows (SURFOs) have not only been working with GSO scientists, but they have spent part of their time learning how to communicate this science to the public. Read on to find out what they have been up to, and why they everyone should be as excited as they are about their work.

Jamillez Olmo Classen is a senior at the University of Puerto Rico at Arecibo, majoring in Technology in Industrial Chemical Process. This summer, she worked with Dr. Rainer Lohmann (advisor) and Dr. Jitka Becanova (mentor)  studying harmful chemicals and how to properly measure their concentrations in our water supply. Read on below to learn about her work!

 

Background

Flame retardants, known as variety of substances or chemicals added to combustible materials to prevent fires, delay a fire’s start and provide additional time to escape from it. Being called flame retardants does not mean they’re a family of chemicals; they a variety of chemicals with different molecular structures and properties that act like flame retardants and are combined to be effective.

A schematic of where flame retardants can be found in your household. Image: Environmental Working Group

Today, flame retardants are used in four big industries: electronic and electrical devices (television, computers, etc.), furniture (different types of fabrics), building and construction materials (paint, home insulation, etc.), and transportation (eg. upholstery of cars, trains and even airplanes. In addition, they are used on clothes, mostly in military and firemen vests. As mentioned earlier, flame retardants can be found in many objects which we are exposed to daily and these chemicals can pose a huge threat to human health.

Fate of these chemicals

The use of flame retardants for our safety is a marvelous thing but it is not so great as we think. Some of the groups used or that behave as flame retardants are bad for both human and animal health. These groups are bromated and the replacement for these are the organophosphosphuros flame rettardants(OPFRs). Over the past 15 years, OPFRs  were developed and used as flame retardants because of environmental and health concerns of previously used brominated and chlorinated flame retardants (FRs). Since these are chemicals added, meaning they are not naturally part of the object, the molecules of these chemicals can easily detach from the object added and fall to the surroundings. When detached, they spread out into air and water sources, and remain persistent in the environment for years, making it easy for us to be exposed to them. These chemicals can get into the air, water and dust during manufacture, exposing us to these harmful chemicals via inhalation or skin contact.

Some possible areas where humans are exposed to flame retardants in every day life. Image: EPA, Katie Nieland/Tribune reporting

One of the most concerning avenues for chemical exposure is through our drinking supply. Unfortunately for us, most concentrations of OPFRs are found in different water sources that end up in our potable water supply exposing us in a dangerous way to different health complications. It is known that these compounds are neurotoxins and carcinogens and thus it is important to study their concentrations in different water sources to maintain a safe environment for everyone.

My summer work

This past summer I had the privilege to work in Rainer Lhomman’s lab at the Graduate School of Oceanography. I tested a passive sampler for emerging contaminants of concern in Narragansett Bay (NBay), especially the organophosphate esters (flame retardants). The project was based on testing a commonly used passive sampler called the polyethylene sheet (PEs) that is made up od plastic films cut into small sheets. The passive sampler was tested in a lab experiment for its performance with the compounds. In addition the polyethylene sampler was deployed in five different locations of NBay to observe the performance with OPEs in the field because of the sampler’s previsouly good performance with other compounds. Unfortunately the performance was not as good as expected because the concentrations absorbed by the PEs did not completely represent the concentrations in the water of the different locations. There needs to be more analyses and experiments to find a suitable passive sampler to measure the concentrations of these compounds in marine waters in order to help have a better environment for all.

 

Additional reference:

Ma-Yuxin, Xie-Zhiyong, Lohmann-Rainer, Mi-Wenying, Gao-Guoping (2017). Organophosphate Ester Flame Retardants and Plasticizers in Ocean Sediments from the North Pacific to the Arctic Ocean Environ. Sci. Technol.20175173809-3815 February 28, 2017

 

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 3 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 1 month ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 8 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com