//
you're reading...

Climate Change

Damselfish in distress: on ocean acidification and suicidal reef fish

Munday, L.; Cheal, A. L.; Dixson, D. L.; Rummer, J. L.; Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps Nature Clim. Change. 4, 487-492 (2014). doi:10.1038/nclimate2195

fishies

Artwork by Virginia Schutte

In Finding Nemo, the despondent protagonist Nemo wanders away from a school fieldtrip after his father Marlin mocks his impaired swimming ability, the result of a congenital lame fin. At least that is Pixar’s take on what happened. Science might say it was something in the water that emboldened the little talking clownfish to leave the safety of his reef to embark on a feature length adventure of a lifetime.

That something might have been carbon dioxide, the main culprit of ocean acidification, and prime suspect in anthropogenic climate change. When atmospheric carbon dioxide dissolves in water, it equilibrates to form carbonic acid. Acidification due to dissolved carbon dioxide is the same reason your dentist might have told you to avoid carbonated beverages. Sugar aside, just like the carbonation in a can of soda weakens your teeth, increases in acidity (decreases in pH) due to dissolved carbon dioxide can compromise coral structure, or otherwise alter the physiology of, for example, Nemo.

A study recently published by Munday et al. in Nature Climate Change suggests that reef fish exposed to higher levels of carbon dioxide exhibit reckless and vagrant behavior as compared to their more conservative counterparts in waters with lower concentrations of carbon dioxide. Past studies meant to simulate the effects of ocean acidification on fish behavior have shown that elevated exposure to the greenhouse gas desensitizes laboratory-reared fish to danger, such as predation. However, the question remains: how are native ecological communities affected by behavioral changes due to continuous exposure to elevated levels of carbon dioxide?

Munday et al. set out to address this question for the first time by studying behavioral differences in species of cardinalfish and damselfish in the context of the reef ecosystems they inhabit. The team took advantage of a unique natural “laboratory” afforded by reefs in Papua New Guinea situated on volcanic seeps, vents in the ocean floor that contribute elevated levels of carbon dioxide to the surrounding waters similar to levels projected as a result of rising anthropogenic carbon dioxide emissions.

Bubble bubble, might mean trouble. Carbon dioxide bubbles from a volcanic seep on a reef in Papua New Guinea.  Photo by Laetitia Plaisance.

Bubble bubble, might mean trouble. Carbon dioxide bubbles from a volcanic seep on a reef in Papua New Guinea.
Photo by Laetitia Plaisance.

Behavior of reef fish  situated near seeps could be compared against nearby “control” reefs with similar population structures, but with more typical carbon dioxide concentrations . Owing to the sedentary nature and limited home range of cardinalfish and damselfish, it is assumed that they have experienced the same environmental conditions since settling. This includes the prolonged exposure to elevated levels of carbon dioxide in the case of the seep fish.

Consistent with previous results on laboratory-grown fish, Munday et al. found that juvenile reef fish from carbon dioxide seeps exhibited a desensitization to ecologically relevant olfactory cues. Seep fish displayed poorer decision making abilities in the face of simulated danger. When offered a choice between streams of water flavored with predator odors or no odor, seep fish chose the predator-flavored stream 90 percent of the time, while their control counterparts avoided it altogether.

Living dangerously. Preference of four species of juvenile reef fish from control and seep (CO2) reefs for water treated with “predatory” odors. The vertical axis is the percent of time a given species fish spent in the treated or control stream. Seep fish show a clear preference for predatory odors, while their counterparts in control reefs completelyavoid predatory odors.

Living dangerously. Preference of four species of juvenile reef fish from control and seep (CO2) reefs for water treated with “predatory” odors. The vertical axis is the percent of time a given species fish spent in the treated or control stream. Seep fish show a clear preference for predatory odors, while their counterparts in control reefs completely avoid predatory odors.

Seep fish exhibited overall bolder behavior and an inability to distinguish between habitats, such as a lack of interest in shelter when it was offered. Seep fish spent an average of 12 percent sof their time in shelter as compared to 90 percent for control fish and emerged an average of six times faster from shelter than control fish as a result of disturbances.

Leavin' home too easy. Seep fish spend less time in shelter (top panel), and venture further from shelter (bottom) than their counterparts from control reefs.

Leavin’ home too easy. Seep fish spend less time in shelter (top panel), and venture further from shelter (bottom) than their counterparts from control reefs.

Moreover, seep fish spent approximately equal amounts of time in streams of water flavored from their native habitats compared to control habitats, while control fish preferred their native waters even after adjusting for differences in carbon dioxide concentrations. In general, seep fish could be said to be more susceptible to being eaten, and hence less likely to survive? than their downtown counterparts.

What is perhaps most alarming is that the fish do not seem to be able to adapt to continuous carbon dioxide exposure.  Munday et al. considered differences in energetic demands resulting from elevated exposure to acidified waters to provide a possible physiological explanation for behavioral impairment as a result of carbon dioxide exposure. However, a lack of difference in metabolism in damselfish from seeps versus control reefs suggested that energetic demands could not account for behavioral differences. Instead, Munday et al. offer that acidification leads to changes in neurotransmitter function resulting in altered behavior.

Surprisingly, Munday et al. note that diversity and community structure do not differ between carbon dioxide seeps and control reefs for two of the sites. They explain this anomaly by the ability of seep reefs to recruit fish from the outside, as well as the smaller population of predators in the seep reef environments. If true, this theory raises alarming implications for an acidifying ocean, suggesting that as elevated dissolved carbon dioxide becomes the norm, populations might lose their ability to rebound. For a third site, Munday et al. observed significant differences in abundance of small fish species between seep and control reefs. They rationalize that these differences arise from substantial habitat-specific differences, rather than differences in dissolved carbon dioxide levels. Overall, the differences observed between the control and seep sites for the third location are less than their differences with the other two sites.

Although their findings have yet to be generalized across other ocean ecosystems, Munday et al. hint at the threat of biodiversity loss due to ocean acidification of the world’s oceans. While it may be impossible to know for certain the long-term effects of ocean acidification, if humanity fails to curb emissions of carbon dioxide to the atmosphere, many more Nemos may be lost, perhaps never again to be found.

Broader impacts

by Virginia Schutte

Many common fish we eat depend on coral reefs for some part of their life cycle. This is why climate change is so scary: yes we want to protect nature, but we really want our food and water sources to continue to sustain us!

To craft the best management plans to protect and restore natural resources, we have to understand what will happen in the future, not just what is happening now. But almost everything we know about how ocean acidification will affect fish comes from laboratory studies, which just is not as realistic as studying fish in their natural habitat.

This research finds that young fish living on lower-pH reefs in the wild are more likely to take risks and get eaten by predators. Even though they have lived on these reefs for much of their lives, they are not able to adjust to what the lower pH does to their brains.

Here is what you can do to make sure you contribute as little to climate change and ocean acidification as possible:

1) Calculate your carbon footprint to learn what elements of your lifestyle contribute most to climate change.

2) Do not be intimidated- even smaller changes like recycling or using less plastic can have a big positive impact on the environment.

3) Connect with nature near you to remind yourself why your efforts are worth it!

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 5 days ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 weeks ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 weeks ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 3 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 3 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 4 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 4 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 5 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 5 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 6 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 6 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 7 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 7 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
  • by oceanbites 8 months ago
    Today is the day of  #shutdownacademia  and  #shutdownstem  and many of us at the Oceanbites team are taking the day to plan solid actions for how we can make our organization and the institutions we work at a better place
  • by oceanbites 8 months ago
    Black lives matter. The recent murders of Ahmaud Arbery, Breonna Taylor, and George Floyd have once again brought to light the racism in our country. All of us at Oceanbites stand with our Black colleagues, friends, readers, and family. The
WP2Social Auto Publish Powered By : XYZScripts.com