//
you're reading...

Biogeochemistry

Of whales and cows: the baleen whale microbiome revealed

J.G. Sander, A.C. Beichmann, J. Roman, J.J. Scott, D. Emerson, J. McCarthy, and P.R. Girguis. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nature Communications. 22 September 2015. DOI: 10.1038/ncomms9285.

The Illuminated Ruminant.

The Illuminated Ruminant.

We are animals, and our cells are eukaryotic cells, but our bodies are host to upwards of ten times more bacterial cells, also known as our “microbiome”. The microbiome of our guts is particularly important in helping our bodies to access energy stored in the food we eat—without it we would starve. So, how is an individual’s gut microbiome determined? That “your gut microbiome is what you eat” shouldn’t come as too much of surprise, as an organism needs to be able to extract nutrients from the foods it ingests. On the other hand, the way that microbiomes have been inherited through evolutionary time is less intuitive, since the composition of the microbiome has everything to do with environment and nothing to do with the inherited genetic code of the host organism. One way to study this so-called “phylogenetic inertia” is to examine the microbiomes of two distantly related groups of animals with distinct diets. It so happens that whales and cows are related by a common terrestrial ancestor, but while cows are exclusively herbivorous, whales are strictly carnivorous. Hence, a comparative study of their respective microbiomes could tell scientists something about the role of phylogenetic inertia in shaping the gut microbiome.

So, asked a team of U.S. researcher led by Jon G. Sanders, how does the microbiome of a whale compare to that of terrestrial mammals (both herbivores and carnivores)? The study reported recently Nature Communications shows both expected parallels with the microbiomes terrestrial carnivores, as well as some surprising similarities between the gut microbiomes of baleen whales and terrestrial herbivores (like cows).

To obtain samples used in their study, Sanders et al. first scoured the Atlantic Ocean, fishing fresh whale poop from off the side of a ship. With samples in hand from three Atlantic whales, and then some Pacific poop courtesy kindly collaborators, they extracted the DNA content of the poop, and sent it out for sequencing. As a first pass, they performed a community-level analysis to determine what bacterial species were present in the surveyed baleen whale gut microbiome. As expected, the diversity of baleen whale microbiomes different markedly from those of terrestrial mammals.  Indeed, the baleen whale microbiome shared only about ten percent in common with species identified in terrestrial microbiomes. Surprisingly, that slice of the baleen whale microbiome showed more similarity to microbiomes of terrestrial herbivores than it did to terrestrial carnivores, despite the whale’s strictly carnivorous diet.

Sander et al. next shifted from the question of “who’s who?” in the microbiome to “what do they do?”. Consistent with the whale’s carnivorous diets, Sanders and co-workers found genes encoding for enzymes that are involved in break down of proteins. What caused more of a stir were the similarities they found between baleen whales and terrestrial herbivores in enzymes involved in carbon metabolism and fermentation. Cows rely heavily on fermentation as a means of digesting the polysaccharide cellulose, which is the main structural component of plant cell walls.  By analogy, baleen whales consume a diet rich in the marine counterpart of cellulose, chitin, which makes up the shells of zooplankton.  Indeed, making the most of their food makes a great deal of sense for animals that swim thousands of miles every year.

Sanders et al. conclude that the similarities between the whale gut microbiome and that of cows may arise from a conserved gut morphology. Both baleen whales and cows possess a conserved foregut. In cows this foregut is established to serve as a fermentative chamber for the breakdown of cellulose. In baleen whales, it would appear that this ancestrally-derived feature was adapted to extract energy from the cellulose of the sea—chitin. Taking a step back, Sanders et al. further speculate that the whale microbiome may serve an important function in the global carbon cycle by breaking down difficult-to-digest chitin into simpler carbon building blocks that can be mineralized back into carbon dioxide that is in turn utilized by photosynthetic organisms and so on and so forth back to chitin—to think it all started with some stink-y whale poops!

 

Discussion

Trackbacks/Pingbacks

  1. […] by Sandra Schleier- Original Post by Abrahim El […]

Post a Comment

Instagram

  • by oceanbites 6 days ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 weeks ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 weeks ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 3 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 3 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 4 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 4 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 5 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 5 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 6 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 6 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 7 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 7 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
  • by oceanbites 8 months ago
    Today is the day of  #shutdownacademia  and  #shutdownstem  and many of us at the Oceanbites team are taking the day to plan solid actions for how we can make our organization and the institutions we work at a better place
  • by oceanbites 8 months ago
    Black lives matter. The recent murders of Ahmaud Arbery, Breonna Taylor, and George Floyd have once again brought to light the racism in our country. All of us at Oceanbites stand with our Black colleagues, friends, readers, and family. The
WP2Social Auto Publish Powered By : XYZScripts.com