you're reading...


Perfluorooctanoic acid (PFOA) Entering Deeper Ocean via Vertical Eddy Diffusion

ARTICLE: Rainer Lohmann, Elena Jurado, Henk A. Dijkstra, and Jordi Dachs. Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans. Environmental Pollution 179 (2013), 88-94.   http://dx.doi.org/10.1016/j.envpol.2013.04.006



The ocean is home to many creatures: plankton, fish, mammals, etc. But it is also ‘home’ to a number of persistent organic pollutants (POPs), which are usually at low concentrations in the water but have the potential to bioaccumulate. Where do these pollutants end up? Do they stay in the surface water or do they sink into the deep? To date, scientists have suggested two possible mechanisms by which pollutants could sink into deeper waters, the ‘biological pump’ and the ‘physical pump’. Through the ‘biological pump’, pollutants are removed from the surface via phytoplankton uptake and then organic carbon settling flux. In carbon settling flux, fecal pellets and dead organisms sink to bottom as particulate matter. Through the ‘physical pump’, POPs sink with water masses by deep-water formation, in which salty surface water sinks as it  cools.

However, there is one special emerging group of POPs, perfluoralkyl carboxylic acids (PFCAs), whose distribution  might not be explained by these two pumps.  PFCAs have been in use since the 1960s to manufacture fluoropolymers.  Among the PFCAs detected in the environment, the most commonly detected is perfluorooctanoic acid (PFOA), which is used to make fluoropolymers such as Teflon.  Due to their acid character, they remain in ionic form in the ocean environment and are not easily volatilized into the atmosphere. Meanwhile, owing to their ionic property and relatively high solubility in water, they do not adsorb strongly to sinking particles. The mechanism of the ocean sink is poorly constrained for them.

This Study

In this study, Lohmann et al. find a possible way for these compounds to reach the deeper ocean – vertical eddy diffusion. Eddy diffusion occurs when there is a random mixing of molecules by eddies. In their study, they used a three-layer vertical eddy diffusion turbulence model to study the removal process. In their model, the ocean is considered stratified into three layers. A vertical eddy diffusion coefficient (E) is used to describe the ability of the compound to move in each layer. Within each layer,  the same value of E is assumed. A higher E value indicates a faster speed.  In terms of the three layers, E is highest in the top layer, reduced in the middle one, and then increases slightly in the lowest one.


figure1Results show excellent agreement between modeled and measured PFOA concentration for the top 3000 m in the Japan Sea (Fig 1). The model is then used to estimate the change of PFOA concentration and fluxes with time and depth. The concentrations in surface waters increase from 1970 to 2009, with a continuous decrease in concentrations and fluxes with depth as shown in Figure 2. The removal flux of PFOA at 100 m depth across the global ocean is also estimated. As a result, the North Atlantic emerged as a main sink for PFOA, with cumulative removal fluxes below 100 m depth over the last 40 years of about 470 t, followed by the South Atlantic at around 190 t.  The Indian Ocean contributes around 11 t in total. Globally, eddy diffusion accounts for 660 t PFOA of the total global ocean sink.


Results suggest that there is up to 1100 tons of PFOA residing in the top 100 m of the water column, with the majority in the North Atlantic. Previous reports give a number of 3200-7300 t of PFOA produced every year. The ocean stores 21% of PFOA in the top 100 m of surface water, while around 13% is removed to greater depth. Additionally, there is a 4% removal by the ‘physical pump’ through deep water formation, which was mentioned above.

In conclusion, vertical diffusion to the deep ocean is the main known sink of PFOA from the environment. This finding explained the observed Japan Sea vertical PFOA profile and helped researchers understand the transport and fate of PFOA in the marine environment. Over time, it seems likely that perfluorinated compounds will accumulate in larger concentrations in the open ocean before production is completely abated, increasing the role of vertical eddy diffusion as a sink process. Because PFOA  has developmental, reproductive, and  systemic toxicity and accumulates in organisms, the increasing concentration in the deep ocean could cause harm to deep ocean creatures. At the same time, it is still unknown whether the deep ocean is the final destination for these compounds.  If it is not, we are concerned with the time it takes to get them back to surface again.


No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 7 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 10 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com