//
you're reading...

Hazards

Time to update the history books: the future of radionuclides in the ocean

Paper: P.P. Povinec, L. Liong Wee Kwong, J. Kaizer, M. Molnár, H. Nies, L. Palcsu, L. Papp, M.K. Pham, P. Jean-Baptiste, Impact of the Fukushima accident on tritium, radiocarbon and radiocesium levels in seawater of the western North Pacific Ocean: A comparison with pre-Fukushima situation, Journal of Environmental Radioactivity, Volume 166, Part 1, January 2017, Pages 56-66, http://doi.org/10.1016/j.jenvrad.2016.02.027

 

Snapshots in time

Figure 1: Schematic of ocean measurements of tritium and 14-carbon from bomb testing and CFC-11 and CFC-12 from refrigerants. Source: Jenkins, Treatise on Geochemistry, 2003 ISBN: 978-0-08-043751-4

What do poodle skirts, shoulder pads, and butterfly clips have in common? They are all iconic snapshots of fashion for a particular decade.  Anthropogenic chemicals serve the same purpose in the ocean. Scientists date water masses based on radionuclides (isotopes that undergo radioactive decay) measured. Nuclear weapon testing released massive amounts of tritium (3H) and radiocarbon (14-C) into the ocean (Figure 1, peak ocean concentration in 1965).  Using this and other information scientists can estimate where a water mass came from, as well as how long it had been moving through the ocean.  After any major radionuclide additions to the atmosphere and ocean, the radioactivity snapshot parameters have to be reevaluated to not misinterpret water masses histories.  For example, if you see teen girls in choker necklaces and crop tops today, you know you probably didn’t travel back in time but the “fashion clock” has reset in 2017 with similar fashion elements to the 90s.

Global Weapons Testing

Scientists refer to “global fallout background” as the period of time from the 1940s to the early 1960s where the United States and other countries conducted more than 500 nuclear weapon tests in the atmosphere (cdc.gov). Overall, there have been over 2000 detonations since 1945.  The radioactive particles and gases released spread over the globe, depositing in the ocean and on land (i.e. the fallout) before decaying and becoming more dilute. Estimates of the radionuclide totals along with the rates of decay help mark the age of deep-water masses in the ocean since the calculations pinpoint when masses were last at the surface.

Fukushima

On a Friday afternoon in 2011, a 9.0 magnitude earthquake off the coast of Japan resulted in a 15-meter tsunami that killed about 19,000 people (world-nuclear.org). As if that wasn’t bad enough, the tsunami damaged a Japanese nuclear power plant (NPP), Fukushima Daiichi, preventing multiple units from cooling properly. The reactor was flooded with seawater, which subsequently leached radioactive contaminants back into the ocean as the water receded. Radionuclides were also released into the atmosphere. Atmospheric radionuclides have the ability to travel long distances quickly via air currents and deposit both in the ocean and on land.  After the Fukushima accident, scientists all over the globe measured local coastal waters and the atmosphere as part of an effort to understand the fate of radionuclides from the Fukushima disaster. If you want to learn more about radioactivity in the ocean after Fukushima visit www.ourradioactiveocean.org. You can learn more about radiation and look at data collected from 2011 – 2017 in the ocean and on land.

Focus of this study

There are numerous studies measuring radionuclides in the water, soil, atmosphere, and biota as a result of the Fukushima NPP release. In this study, scientists onboard a US expedition (June 2011) collected seawater samples east of Japan from the surface down to 500 m. They hoped to better understand the distribution of important radionuclides in the ocean. Another goal of this work was to use these new measurements to update tracer databases used by scientists to help age water masses.

The radioactive players

Scientists measured seawater samples for 137-cesium, tritium, and radiocarbon. The most important radionuclide released during the Fukushima disaster was 137-cesium (137Cs).  Released in large quantities, this radionuclide has a relatively long half-life (~30 years) and high bioavailability (the ability to be broken down and used by organisms). There was a significant amount of 134-Cesium released as well, but its much shorter half-life (2 years) lessens its long-term impact and scientists did not include it in the analysis. Tritium (3-hydrogen) and radiocarbon (14-carbon) were released as well, although in much smaller quantities than during the weapon testing of the ‘50s and ‘60s (the global fallout background).

137-Cesium

Measured 137-cesium was at least 200 times higher than previous background measurements, with levels remaining elevated even at 600 km distance from Fukushima. Figure 2 compares this group’s measurements to established background 137-cesium (red line). There is a decrease (6 times) in 137-cesium from measurements taken soon after the Fukushima disaster highlighting the ocean’s role in mixing and diluting the water mass from the Fukushima accident—this is supported by reports from stations showing a maximum 137-cesium level below the surface, indicating waters are mixing away from the source.

Figure 2: 137-Cesium concentration in seawater samples collected during the cruise in June 2011. The red line represents data from a cruise in 1997 and serves as a marker of background fallout measurements. Stations marked from Buesseler et al (another published data from the same cruise). Figure modified from Povinec et al. Figure 2a.

Tritium

The maximum tritium found was at 10 m water depth at a station 30 km offshore. The tritium seawater profiles were similar to 137-cesium with high values 100 m deep showing mixing into the deeper layers of the ocean. Overall, there was less tritium released relative to 137-cesium and there is only a factor of 6 increase compared to the global fallout background.

Radiocarbon

The radiocarbon depth profiles were similar to both 137-cesium and tritium with the highest concentrations about 100 m down.  Unfortunately, there is no data available about the concentration of radiocarbon released after the Fukushima accident. The radiocarbon produced due to Fukushima should be tiny when compared to both the naturally- and nuclear-produced levels. Scientists used radiocarbon measurements from 400 – 500 m as the background concentration because there was insufficient time for Fukushima altered water masses to have reached that depth. They saw only a 9% increase in radiocarbon that could be attributed to Fukushima.

Time to update the history books 

Figure 3: Background 137-cesium levels in the ocean before Fukushima. Source: www.ourradioactiveocean.org, Jack Cook, Coastal Ocean Institute, Woods Hole Oceanographic Institution)

137-Cesium was the largest radionuclide addition to the ocean after the Fukushima accident but oceanic concentrations of tritium and radiocarbon changed as well. As more time passes, their concentrations will decrease through dilution and decay but the Fukushima accident has altered the established snapshot of the ocean. Figure 3 shows the known oceanic 137-cesium as of 2008 and needs to be updated post-Fukushima. Moving forward, scientists will need to consider Fukushima-influenced water masses when using radionuclides as water mass tracers.  If this is done effectively, these radionuclides will be effective tools to study changes in deep water formation and biogeochemical processes in a warming ocean.

Discussion

One Response to “Time to update the history books: the future of radionuclides in the ocean”

  1. instead of just posting “Figure 3: oceanic 137-cesium from 2008” you might want to include the direct link for current results: http://www.ourradioactiveocean.org/results.html

    Posted by nina | May 1, 2017, 11:03 am

Post a Comment

Instagram

  • by oceanbites 11 hours ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 1 week ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 weeks ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 weeks ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 3 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 3 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 4 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 4 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 5 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 5 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 6 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 6 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 7 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 7 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
  • by oceanbites 8 months ago
    Today is the day of  #shutdownacademia  and  #shutdownstem  and many of us at the Oceanbites team are taking the day to plan solid actions for how we can make our organization and the institutions we work at a better place
WP2Social Auto Publish Powered By : XYZScripts.com