you're reading...


Too Slick to Stick

Have you ever walked down a dock to look at the boats? How about under the boat? The sides? Chances are you’ve probably seen a few things growing on the boat wherever it is submerged underwater such as barnacles or algae. This is known as biofouling, the unwanted accumulation of plants and animals on a submerged surface.

A boat pulled out f the water and standing on land exposing the propellers and hull which are covered in various fouling organisms.

Biofouling, the unwanted accumulation of plants and animals on a submerged surface, has been problematic for the shipping industry throughout history. Picture credit: Jean-Pierre Bazard

What you may not know though, is that the growth of these unwanted plants and animals can have some negative impacts on the shipping industry. These include an increase in drag, fuel consumption, greenhouse gas emissions, potential invasive species transport, and a decrease in overall vessel efficiency. It has been estimated that there can be about a 40% increase in fuel consumption from the resulting drag associated with vessel hull fouling. In addition, the global shipping industry estimate for the cost associated with biofouling is around 30 billion USD per year. With such negative impacts from small organisms, it’s no wonder there has been so much effort put into finding biofouling prevention methods. One antifouling compound was particularly effective for a long time, but it came with some unintended consequences.

Antifouling Magic…at a Price

Tributyltin (TBT) was once used to combat these fouling problems; however, as effective as it was at preventing biofouling settlement, it had major environmental impacts. TBT had toxic effects on marine ecosystems which resulted in it being banned from antifouling ship hull paints globally in 2008. This resulted in many organizations looking for other more environmentally friendly and effective ways to prevent fouling.

Mussels with their byssal threads attached to the ground and other mussels.

Mussels, a filter feeding animal that is a common fouling organism, use their byssal threads to attach to a surface. Picture credit: Emily Carrington

One concept for a more environmentally friendly antifouling method is Slippery Liquid Infused Porous Surfaces (SLIPS). SLIPS are a result of a strong chemical attraction between the surface and an applied lubricant. Experiments have shown that synthetic oils and lubricants applied to these SLIPS are very effective at not only deterring the settlement of mussels, but also reducing the strength of the attachment threads of the mussels. While these synthetic oils maybe more environmentally friendly than TBT, synthetic oils tend to be fluorinated and the leakage of these chemical compounds over time into the marine environment is still concerning.


The researchers of this study wanted to see if more non-toxic and eco-friendly fatty acid based biolubricants could be as effective as the synthetic ones. To carry out this research, seventeen Asian green mussels were scattered in a tank onto each checkerboard choice assay (the different SLIPS test surfaces were aligned in a checkerboard fashion) and mussel movement to certain tiles was observed for two weeks. Then the strength of the mussel was measured for each surface attachment.

A bunch of Asian green mussels where some are submerged and water and others are exposed to the air.

Asian green mussels are native to Indo-Pacific waters, but they have been introduced outside of their home range and are now considered an invasive species in many areas. As such, these mussels have become a problematic biofouling organism in the places they have been introduced. Picture credit: Tord Remme

After two weeks in the tank, the mussels formed into two distinct clusters on each of the three checkerboard tiles. This movement of the mussels demonstrates that the mussels were selecting a surface they preferred and were more repelled by the biolubricant SLIPS test surfaces. The adhesion strength of the mussel also decreased for these test surfaces when compared to the control.

Brownie Points for Being Eco-Friendly

These results indicate that the biolubricant SLIPS test surfaces are just as effective as the synthetic oil ones. This is exciting because these environmentally friendly biolubricants can be utilized for the same purpose of antifouling, but without the drawbacks of potential negative environmental impacts.

Paper: Basu, S., Hanh, B. M., Chua, J. I., Daniel, D., Ismail, M. H., Marchioro, M., Amini, S., Rice, S. A., & Miserez, A. (2020). Green biolubricant infused slippery surfaces to combat marine biofouling. Journal of Colloid and Interface Science, 568, 185-197.



No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com