you're reading...


Corals get their auras read

Corals: diverse, yet declining

If you’ve seen any movie or documentary on marine life, you are probably aware that coral reefs are diverse habitats, but they are declining worldwide due to myriad anthropogenic stressors, including higher water temperatures. Although we often see coral reefs and their degrading state from a large scale, there is a very important component to coral reefs that is not easily viewed by the naked eye.

Microbial communities are diverse assemblages of bacteria, eukaryotes, cyanobacteria, and pathogens, and they are integral to coral reef health and stability. Early investigations of microbial associations with corals showed a strong relationship between the host macro-organism: most corals contain photosynthetic algae called zooxanthellae that live in their tissues. The coral provides the algae with a secure home, and the zooxanthellae, through photosynthesis, provide food for the growing coral. In this mix is also microbial communities associated with the coral host and symbiotic zooxanthellae. Research has shown that coral organism coverage is important in determining the types of microbial communities living directly on the coral and in the surrounding water.

Macro-organisms living on a coral reef, such as coral and different growth forms of algae, influence the amount of dissolved organic carbon (DOC), dissolved oxygen, and bacterial abundance in the surrounding water. Different levels of DOC that are sloughed off coral surfaces into the overlying water can influence the types of bacteria, and ultimately the major metabolic processes, occurring there. DOC is important because it is a readily available nutrient source for many microbial organisms.

Why care about microbes?

Even on a single reef ecosystem, the dominant coral organisms can be diverse; we can find observe a “patchwork mosaic” of microbial communities in the overlying water. Recent research has also discovered that microbial communities associated with the overlying waters of pristine corals consist of autotrophs and heterotrophs, while communities above degraded reefs are dominated by heterotrophs, including some pathogenic bacteria. As climate change and pollution continue to stress ocean life, including coral reefs, it is important to understand how changing coral coverage influences DOC dynamics and microbial communities. These changes may affect the ability of corals to recruit algae and grow.

The study

Image of the four major coral organisms sampled in this study. Photo credit: K. Barrett via Wikimedia Commons.

The authors in the present study hypothesized that four different coral organisms, fleshy macroalgae, turf algae, zoanthids (an animal related to corals and jellyfish that colonizes corals), and coral, influences the microbial community (or “microbiome”) in the overlying water column. The authors refer to this microbiome that is directly above a particular coral cover type as the “aura-biome.” To test their hypothesis, the researchers collected water samples directly above different patches of coral cover present at the reefs of Ilha Santa Bárbara, an island off the coast of Brazil.

Then, the authors extracted all DNA present in the water samples, and used the DNA for shotgun metagenomics. Shotgun metagenomics is a relatively recent method in which all genes in all organisms from various environments are sampled. This method, unlike microscopy or cell cultures, enables researchers to evaluate bacterial diversity and detect abundances of microbes in various environments, and provides a means to study unculturable organisms that are difficult to analyze.

Using metagenomics, the authors were interested in not only identifying the microbial species in the water, but they also wanted to identify the active metabolisms, such as cell division and respiration, that were present in the coral-specific aura-biome.

Results and why they matter

As hypothesized, the authors found that each coral cover type was associated with a distinct microbial community in overlying water. The authors found higher representation of eukaryotic microorganisms in the aura-biome above the zoanthids. Across all of the aura-biomes sampled, bacteria comprised the majority of the metagenomes.

The researchers also found distinct groupings of microbial metabolisms in the aura-biomes. Respiration pathways were important in the fleshy algae aura-biome, and these pathways suggested anoxic growth, such as methanogenesis by anaerobic bacteria. Stress response, respiration, and membrane transport mechanisms dominated the zoanthid aura-biome. The zoanthid aura-biomes had high counts of potential coral pathogens and bacteria that are associated with coral yellow band disease. Zoanthids also contain a potent toxin, palytoxin, which may create a stressful environment that favors toxin-producing bacteria in the aura-biome.

(Featured image) Diagram of the major coral cover organisms, their aura-biomes, and the major processes and organisms associated with each biome. Photo credit: Walsh et al. (2017).

Virulence, disease, and defense were overrepresented in the turf algae aura-biome. Turf algae often contains high abundances of cyanobacteria, the “blue-green” algae, and can release high amounts of DOC into overlying aura-biomes. Interestingly, in the turf algae aura-biome, the heterotrophic bacteria Vibrio and Flavobacterium comprised a significant portion of the microbial community. These bacteria were most likely feeding on the high levels of DOC. Vibrio are well-known pathogens associated with declines in coral health, coral bleaching, and diseases. Flavobacterium includes bacterial species that can cause disease in trout.

Because a single reef can contain a mosaic of cover types, the aura-biomes of these coral types may be detrimental to the health of adjacent organisms.

Bringing it all together

Just as climate change is exerting detrimental impacts on coral reefs, reefs are also influencing the microbial community in the water column surrounding the reefs. As this research illustrated, each aura-biome possesses distinct microbial assemblages and functions, which may interact with neighboring corals. The main driver in these changes may be the levels of DOC that are shed into the coral aura-biomes, which can fuel bacterial species that are detrimental to coral health. It will be interesting to see if future studies on other coral reef ecosystems around the world find similar trends in aura-biome composition. And, sampling aura-biomes using high-throughput metagenomics could be a useful tool to monitor and predict the health of coral ecosystems.


No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com