//
you're reading...

Remote Sensing

Monitoring the benthos by listening to photosynthesis

Journal source: Freeman SE, Freeman LA, Giorli G, Haas AF (2018) Photosynthesis by marine algae produces sound, contributing to the daytime soundscape on coral reefs. PLoS ONE 13(10): e0201766. https://doi.org/10.1371/journal.pone.0201766

Photosynthesis drives food webs

Photosynthesis, the biological transformation of atmospheric or dissolved carbon dioxide into organic matter, drives virtually all marine food webs. Usually, tiny phytoplankton floating in surface waters are doing the photosynthesizing. But scientists are increasingly finding that organisms living on the bottom (collectively called the benthos) are an important source of energy in the food web.

Even though we can not always see the bottom of coastal estuaries or nearshore habitats, benthic habitats are home to abundant photosynthesizing algae, such as those found on coral reefs. Often, these algae communities are so productive that they provide an important food source for benthic animals, such as grazing snails, and open water organisms, like zooplankton. Close examination of these benthic algae communities can reveal thick, green mats that contain numerous photosynthesizing diatoms and Cyanobacteria.

Generalized diagram of pelagic and benthic food chains. Photo source: Wikimedia Commons.

The sound…of photosynthesis

These organisms photosynthesize by taking in carbon dioxide, which they use to make organic matter that can be consumed by organisms higher up in the food chain. A by-product of photosynthesis is oxygen, which exits the algal communities in oxygen-containing air bubbles; the presence of tiny air bubbles on these algae communities can indicate that a particular benthic habitat is actively photosynthesizing. Imagine a healthy coral reef teaming with algae, and all the air bubbles being produced by the algae. These bubbles eventually pop, and they produce underwater sound, and together, in a symphony of photosynthesis, contribute to biological “soundscapes” of coral reef habitats.

Unlike phytoplankton, which hang out in the top layers of the ocean and make it relatively easy for scientists to monitor ecosystem health, the benthos is difficult to survey. It’s important for scientists to be able to monitor benthic ecosystem health because pollution inputs and climate change pose serious threats to the future functioning of these habitats.

A diver surveying a coral reef. Photo credit: NOAA via Wikimedia Commons.

Motivated by the potential application of the sounds produced by photosynthesis to benthic monitoring, Simon Freeman (US Naval Research Academy) and his colleagues took a closer look at these bubbles on algae communities in shallow coral reefs of Hawaii. Many coral reefs in shallow water environments are under increasing stress by nutrient runoff, which can favor the growth of invasive algae. Invasive algae smother coral reefs and impair ecosystem function of these habitats, causing a cascade of adverse effects on local food webs. Freeman used hydrophones, or underwater microphones, in a controlled laboratory setting to measure the sound produced by bubble “pings” on the surface of an invasive red algae common to Hawaiian reefs. The researchers demonstrated that the intensity of the popping sound of the bubbles closely tracked the concentration of dissolved oxygen in the aquarium; more popping sounds from the bubbles indicated higher levels of dissolved oxygen, which meant high levels of photosynthesis.

(Featured image) Zoomed-in view of bubbles on the surface of coral reef algae, and sound signals of popping bubbles (Photo credit: Figure 1 from Freeman et al. 2018).

The bigger picture

The researchers suggest that acoustic tools could be used on natural coral reefs to monitor levels of photosynthesis, and possibly biomass of algae. Current monitoring protocols for ecosystem health typically involve researchers taking organism samples from various marine habitats. Some of these techniques are quite invasive and can be destructive to the habitat of concern. Passive acoustic recordings, on the other hand, are non-invasive and could be used as an ecosystem monitoring technique to track temporal changes in coral reef health.

Listening to the sounds produced by photosynthesis could be used to manage reef ecosystems that have been impacted by. However, there is much work to be done in order to make acoustic monitoring a reliable tool in the field. One particularly large challenge will be how to find the bubbles in all the noise; other sounds, such as waves, passing boats, and movements of fish and invertebrates, can overpower the bubble sounds. Even with these interfering activities, knowledge of the sound produced by photosynthesizing benthic algae sheds light on the role of these habitats as the base of marine food webs and as an indicator of marine ecosystem health.

 

 

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 8 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 9 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com