//
you're reading...

Biological oceanography

Rugged Southern Ocean phytoplankton weather the storms

Article: Carranza, M.M., Gille, S.T., Franks, P. J., Johnson, K. S., Pinkel, R., & Girton, J. B. (2018). When mixed layers are not mixed. Storm-driven mixing and bio-optical vertical gradients in mixed layers of the Southern Ocean. Journal of Geophysical Research: Oceans, 123, 7264–7289. https://doi.org/10.1029/2018JC014416.

Since I began studying oceanography, I’ve heard the Southern Ocean described as the “wild west” of the world’s oceans. Located in the Southern Hemisphere, it surrounds the distant, isolated continent of Antarctica, and serves as a passageway between the Pacific, Atlantic, and Indian Oceans through the Antarctic Circumpolar Current (ACC).

Unlike other ocean currents, the ACC is the only one to encircle the globe without being bounded by a continent. This unique feature gives the Southern Ocean its “wild west” feel – vast swaths of emptiness are accompanied by bands of chaotic motion in the ocean – or turbulence – as the wind-driven ACC circles around Antarctica, flowing over underwater mountains along the way. Boundaries between distinct masses of water set up mixing that promotes large-scale algae (phytoplankton) blooms. Frequent storms produce waves and mixing that complicate dynamics at small scales. Combined, these processes enable widespread uptake of atmospheric carbon (CO2) and heat, making the Southern Ocean a primary region of interest for understanding the how oceans regulate our climate.

Entering the wild west

In 2014, a program called SOCCOM (Southern Ocean Carbon and Climate Observations Modeling) was launched to shed light on the significance of this region through in situ (observational) initiatives – specifically by using free-drifting floats that profile ocean properties. Since 2004, the Argo program has released nearly 4000 such floats around the world. These floats follow surface currents, profiling ocean properties down to 2000 meters depth (about 1.2 miles). The Southern Ocean’s frequent storms and frigid icy weather make it largely inaccessible to humans, which is why Argo floats – along with satellite data – have dominated recent observational studies in the region. In addition, elephant seals have helped us out by retrieving ocean data via CTD (conductivity, temperature, depth) sensors attached to their heads as they migrate and dive to locations inaccessible to humans or floats, such as under sea ice and continental shelves. These seals are particularly useful to scientists because they continuously dive deep and can stay below water for up to 80 minutes.

The aim of SOCCOM is to learn about physical and biological patterns in the Southern Ocean. The study outlined below uses these in situ methods to provide some of the first physical evidence of the resilience and adaptability of phytoplankton residing there.

Will phytoplankton weather the storm?

This study, led by Dr. Magdalena Carranza at Scripps Institution of Oceanography at UC San Diego, aims to elucidate the effect of continuous storms on mixing in the Southern Ocean’s surface mixed layer. The mixed layer is a biologically productive layer of well-mixed (uniform density) water at the top of the ocean, separated from the deep ocean by a strong gradient of temperature and salinity. Wind blends the upper ocean’s temperature and salinity, deepening the mixed layer and drawing up nutrients from below. These conditions set the stage for phytoplankton blooms to occur near the surface.

In recent years, researchers have found that phytoplankton are driven by more than just the temperature and salinity conditions in the mixed layer.  For instance, phytoplankton abundance will decrease if there aren’t enough nutrients, or if the wind is too strong for them to survive and reproduce.

The researchers wanted to find out how these algae are responding to the continuous stream of storms that churn and homogenize the upper layer of the Southern Ocean. With such frequent mixing by storms, how could they possibly have time to set up a unique existence in the mixed layer?

Floats and seals

Argo floats measured fluorescence (light emitted by photosynthetic activity) and backscatter (light reflection from particles, such as phytoplankton) to quantify the abundance of phytoplankton in the mixed layer. Data from 51 floats in the Southern Ocean were retrieved every 5-10 days from 2007 to 2016, including temperature, salinity, backscatter, and chlorophyll-a (chl-a) fluorescence. In addition, 27 elephant seals equipped with CTDs provided data in more  remote areas from 2007 to 2011 (see Fig. 1).

Figure 1: Locations of chlorophyll-a profiles around Antarctica from elephant seals (a, left). Changes in chl-a using seal data over from summer to fall on a path from the Kerguelen Island to Antarctica (b, top right), and changes in chl-a from Argo float data in the South Pacific from 2012 to 2015 (c, bottom right). Black lines are constant density contours.

These data were organized to form a clear picture of physical and biological properties over a nine-year period. Wind conditions were found using satellite data, with stormy conditions classified as any wind speed above 10 meters per second (about 22 miles per hour). The mixed layer was characterized by its depth from the surface, which was defined by the depth at which temperature and salinity were no longer uniform.

Harsh environments breed rugged phytoplankton

Chl-a fluorescence and backscatter, both indicators of biological productivity (i.e. how much phytoplankton are able to stay healthy and photosynthesize), were commonly found to have vertical structure in the Southern Ocean mixed layer where temperature and salinity had none. Maximum amounts of chl-a typically occurred near the bottom depth of the mixed layer, meaning phytoplankton were more keen to dwell there than at the surface, despite the latter providing more sunlight. Although this depth changed with the season and wind, it always remained calmer than the surface.

This result highlights two important findings: 1.) wind mixing is often not uniform within the mixed layer, being stronger near the surface than at the calmer bottom that phytoplankton prefer, and 2.) phytoplankton are able to reproduce faster than the wind is able to mix and homogenize them, allowing us to detect where they grow most abundant.

Therefore, we see that phytoplankton can  maintain structure in the mixed layer distinct from the physical mixing processes that would be expected to suppress them. The researchers suggest that this structure is driven by biological (rather than physical) factors – such as the ability to adapt to different light conditions. To determine exactly how they adapt would require a closer look than the current study is capable of (such as higher resolution observations).

Calm after the storm

Figure 2: A schematic showing the difference between storm (Tstorm, Tinterstorm) and phytoplankton growth (Tbio) timescales, with density profiles in blue and chl-a profiles in green. The mixed layer depth (MLD) is defined by the depth at which density is no longer constant. Chl-a maxima are shown to appear within the mixed layer and close to its bottom depth during intervals between storms.

To tackle how much faster phytoplankton are reproducing than the wind is mixing, the researchers used wind data to estimate storm time scales. They estimated intervals between storms to be about 3-5 days on average, depending on the season. Phytoplankton doubling – the time it takes a population of phytoplankton to double in abundance – was estimated to be about 2.2 days, well under the average between-storm interval (see Fig. 2). This indicated that phytoplankton are capable of rebuilding their populations after storms pass and conditions return to calm.

Dr. Carranza and her team emphasize that Southern Ocean phytoplankton are well-adapted to low temperatures, lack of sunlight, and low iron (a nutrient needed for growth). While the physical conditions do have the power to suppress phytoplankton, they still find ways to bloom during calm conditions. The ways that these phytoplankton are able to adapt and how it might affect the export of carbon to the deep ocean remain mysteries. Luckily, the SOCCOM program is just getting started.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 10 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 11 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com