you're reading...

Climate Change

Sea urchins work harder, faster to cope with ocean acidification

Francis Pan T.-C., Applebaum S.L., and Manahan D.T. Experimental ocean acidification alters the allocation metabolic energy. PNAS. 14 April 2015. doi: 10.1073/pnas.1416967112

Images courtesy of www.thehappymd.com and www.cruiselinejob.com

You’re lying on chaise lounge on a cruise ship somewhere in the tropics sipping a cocktail and working on your tan. Suave bossa nova drifts sensuously through the sultry air, and you let out sigh of satisfaction — sweet escape. Suddenly over the loud speaker the captain announces, “ladies and gentleman – the ship is sinking.” “Besa mi mucho” is drowned out by panicked commotion. A glass shatters on the deck. Babies cry. The heat is suddenly unbearable. “But, please, relax and enjoy the rest of your stay,” continues the captain. “The crew is working overtime to keep us afloat.” Indeed, every last crew member is down below frantically filling and emptying buckets of water overboard. With such reassurances, the cruise continues in relative peace, but the chef and the maids have also had to pitch into the bailing effort, so you’re left with vending machine dinners and dirty sheets for the rest of your holiday.

In much the same way as your cruise ship was able to maintain its restful course, sea urchins challenged with ocean acidification are able to redirect their energy resources to achieve normal development according to a recent study by Francis Pan et al. published in the Proceedings of the National Academy of Sciences. However, re-budgeting energy resources comes at a cost to the fitness of the organism, highlighting a potential consequence to marine life posed by man-made ocean acidification due to industrial emissions of carbon dioxide, also the main culprit of global warming.

Francis Pan et al. examined the effects of acidification on high-level parameters such as metabolism (energy consumption), larval size, and gene expression, in addition to monitoring physiological processes such as protein synthesis and ion transport, which consume most of the cell’s energy during development. They measured these parameters for laboratory reared larvae over a ten day period of development, comparing larvae raised under current ocean conditions to those raised under the lower limit near-future projections for ocean acidification put forth by the International Panel on Climate Change.

They initially examined effects of acidification on morphology of developing larvae, and found no change in body length between treated and untreated larvae. Additionally, they assessed size-specific metabolic activity, as determined by oxygen consumption, and found no effect for treated versus untreated larvae. Hence, it would appear that sea urchins are able to maintain normal development under acidification.

All good, by the looks of things. No change in metabolism (A)  or body length (B) were observed between treated (hollow symbols) and untreated (black symbols) larva.

All good, by the looks of things. No changes in body length for different aged larva (A) or body length versus metabolism (B) were observed between treated (hollow symbols) and untreated (black symbols) larva. (Francis Pan et al., 2015)

Yet, as Francis Pan et al. soon found out, not all was well in the sea urchin cell. Proteins are the workhorses of every cell without which the chemical reactions that make life would come to a screeching halt. Moreover, protein synthesis is an energetically expensive process and hence important for assessing the changes in energy usage in developing larvae resulting from acidification. They observed elevated rates of protein synthesis in the sea urchin larvae under acidification despite no change in overall protein content. Furthermore, they noted an identical protein fingerprint for treated versus untreated larvae, suggesting that the overall process of protein synthesis was made less efficient by acidification. In other words, under acidification, more energy was being expended to yield the same levels and kinds of protein.

protein content and synthesis rate

Working harder to achieve the same. While no change was observed for protein content versus body size (A) for treated (hollow symbols) as compared untreated (black symbols), rates of protein synthesis increased drastically between the experimental and the control (B). (Francis Pan et al., 2015)

In addition to elevated rates of protein synthesis, Francis Pan et al. observed a two-fold increase in the activity of ion transporters that utilize chemical energy in the form of adenosine triphosphate (ATP) to pump sodium and potassium across the cell membrane. Ion transporters are important for signaling in development, and may play a role in regulating the acidity inside the cell. Notably, the increase in activity was only observed through direct measurements of ion transport, and could not be predicted through measurement of gene expression or gross biochemical activity. Hence, Francis Pan et al. emphasize the importance of physiological measurements in understanding the effects ocean acidification, which would otherwise be lost by indirect measures such as gene expression, and holistic measurements such as overall metabolism.

Pumping ions.

Pumping ions.  A) Increased rates of ion transport under acidification (solid line) versus control conditions (dashed line). B) Body length versus ion transport activity shows an average of 1.4-fold increase in size-specific ion transport rates. C) Gene expression does not predict the increase in ion transport activity. (Francis Pan et al., 2015)

Interpreting their observations, Francis Pan et al. translated marginal increases in the rate of protein synthesis and ion transport activity into changes in the energy (ATP) budget of the cell. They estimated a nearly 30 percent increase in the cell’s allocation of ATP toward protein synthesis and ion transport under acidifying conditions in growing larvae. Changes in allocation of ATP mean loss of capacity to respond to other environmental stressors. For example, transporters required for removal of environmental toxins known as ABC transporters (for ATP binding cassette) rely directly on energy from ATP to physically pump toxins out of the cell.

Breaking the ATP bank. Changes in allocation of ATP to protein synthesis (black) and ion transport activity (grey) for control versus acidified larva over a 10-day period of development.

Breaking the ATP bank. Changes in allocation of ATP to protein synthesis (black) and ion transport activity (grey) for control versus acidified larvae over a 10-day period of development.

In describing physiological effects of global warming on sea urchin development, Francis Pan et al. stress the importance of a holistic view for studying effects of stressors at sub-lethal levels. While gene expression, biochemistry, and gross morphological characteristics all said the organism was doing just fine, cellular level physiology told of an organism working overtime to make ends meet. Sea urchins are important ecological players, whose grazing behavior prevents algae and grasses from overrunning their intertidal habitats. Hence, ocean acidification might not only signal disaster for a single species, but could also lead to cascade effects resulting in the destruction of entire ecosystems.

While organisms might be giving us some leeway in re-allocating their energy resources to stay alive, we must curb our carbon dioxide emissions to avoid the tipping point of ocean acidification that triggers a mass extinction of marine life. The crew can only keep the cruise ship afloat for so long with buckets.



No comments yet.

Post a Comment


  • by oceanbites 3 days ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 1 week ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 2 weeks ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 2 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 3 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 4 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 4 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 4 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 5 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 6 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 6 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 7 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 7 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
  • by oceanbites 8 months ago
    Today is the day of  #shutdownacademia  and  #shutdownstem  and many of us at the Oceanbites team are taking the day to plan solid actions for how we can make our organization and the institutions we work at a better place
  • by oceanbites 8 months ago
    Black lives matter. The recent murders of Ahmaud Arbery, Breonna Taylor, and George Floyd have once again brought to light the racism in our country. All of us at Oceanbites stand with our Black colleagues, friends, readers, and family. The
WP2Social Auto Publish Powered By : XYZScripts.com