//
you're reading...

Physiology

Sound waves: dolphins in a noisy ocean

Holt, M.M., Noren, D.P., Dunkin, R.C., and Williams, T.M. (2015). Vocal performance affects metabolic rate in dolphins: implications for animals communicating in noisy environments. J. Exp. Biol. 218, 1647-1654. doi: 10.1242/jeb.122424

The ocean out loud

The ocean is a surprisingly noisy place. There’s the crashing of waves, the rumble of underwater volcanoes, earthquakes, and deep-sea hydrothermal vents. Near ports and settlements, there’s also the groaning of large ships as they lumber through the water, the hum of motors of smaller watercraft, the chatter and splashing of beachgoers. Oil exploration, fishing expeditions, and military sonar also add to the din.

Aside from geological and human influences, the billions of animals that call the ocean home are also quite noisy. Toadfish are known for grunting and humming seductively to attract mates. Male black drum, also looking for their future Misses, can make a low-pitched throbbing sound so loud that it’s been misattributed to engineering faults in nearby homes (De La Pena, 2008, New York Times). Herring can expel air from their swim bladder out their anal pore (mischievously termed a “Fast Repetitive Tick,” or FRT for short). Seahorses clank together parts of their skull. And, of course, there’s the clicks, squawks, and whistles of whales, dolphins, and porpoises.

Dolphins depend on sound

This study relied on a pair of trained bottlenose dolphins from USSC’s Long Island Marine Laboratory. The metabolic hood, where dolphins surfaced to allow measurement of oxygen consumption rate, is shown. Photo credit: Dawn Noren/NOAA Fisheries

This study relied on a pair of trained bottlenose dolphins from USSC’s Long Island Marine Laboratory. The metabolic hood, where dolphins surfaced to allow measurement of oxygen consumption rate, is shown. Photo credit: Dawn Noren/NOAA Fisheries

Sound production is essential for cetaceans like bottlenose dolphins (Tursiops truncatus), which rely on it to communicate with their pod, forage for meals, and navigate the vast ocean (via echolocation, a process analogous to sonar). However, making such a racket can come at a substantial cost – not only in terms of the biological machinery required (e.g. contracting muscles, memorizing sound combinations, etc.), but also the increased risk of being detected by predators or competitors.

While we have a reasonable understanding of how echolocation in marine mammals works on a physiological and biomechanical level, much less is known about how vocalization plays into their overall energy budget. Do chatty dolphins have to invest extra energy into their aural physiological systems? How might dolphins cope with changes in environmental noise levels, particularly in areas where background noise has seen a substantial, recent increase?

Dolphin respirometry

Researchers from NOAA and the University of California, Santa Cruz used flow-through respirometry to measure the oxygen consumption rate of two dolphins trained to vocalize on cue. The animals would swim into a metabolic hood installed at the water surface, and breathe into a sealed air chamber. The oxygen content of the air being pumped into the hood was compared with the oxygen levels inside the hood while the dolphin was breathing. The difference between the two oxygen contents allowed the researchers to calculate the oxygen consumption attributable to the dolphin alone (Figure 1). Since the vast majority of energy expenditure by aerobic organisms (which includes all mammals) is oxygen-dependent, tracking oxygen use over time is a reasonably accurate method of estimating total metabolic rate.

Making more noise requires more energy

Spectrograms are visual representations of changes in vibration frequency (sound). Pictured is a time series of whistles (left) and squawks (right) during loud vocalization trials. Note how different sounds show a different frequency (bottom) and air pressure (top) profile over time. Adapted from Holt et al., 2015.

Spectrograms are visual representations of changes in vibration frequency (sound). Pictured is a time series of whistles (left) and squawks (right) during loud vocalization trials. Note how different sounds show a different frequency (bottom) and air pressure (top) profile over time. Adapted from Holt et al., 2015.

During vocalization, the oxygen consumption rates of the two dolphins increased by 20% and 50%, demonstrating that vocalization costs some energy. This reported cost is similar to what has been reported in birds and bats, suggesting that the energetic demands of sound production may be consistent across a wide range of species (though further study is needed in this area). As the amount of sound made (vocal effort) increased, such as with louder or more frequent calling, so did oxygen consumption rate, likely due to greater energetic demands in the vocal muscles. The type of sound also seemed to be important – whistles require much higher pressure in the bony nasal passage, and probably use more energy than clicks and squawks (Figure 2). However, more animals would need to be tested to confirm this hypothesis.

Overall, the increase in oxygen consumption with increased vocal effort was modest. Using this data set, the authors calculated that the cost of doubling whistling frequency was only about 7 kJ of caloric content (adult dolphins consume over 36,000 kJ daily, and adult humans less than 9000 kJ). This is especially low when considering that dolphins do not always increase the volume of their vocalizations in line with background noise.

Why does this matter?

Greater human activity and influence in the oceans means dolphins and other vocal organisms will need to adjust to higher levels of background noise. While the increases in oxygen consumption rate during vocal modification (e.g. making louder, more frequent, or different noises) reported here are very modest (<0.02% of daily expenditure), they can gradually build up in vulnerable groups, such as resident cetacean populations near coastal cities or shipping hubs. Young, sick or nursing dolphins would also be at risk, as their metabolic demands are already elevated due to high rates of growth, immune activity, and milk production, respectively. This study provided an interesting look at how dolphins may use vocal modification to cope with increasingly noise-polluted environments, and the potential energetic costs of this behaviour.

The total metabolic cost of vocalization was calculated as the difference in oxygen consumption rates while vocalizing and while at rest. Metabolic cost increases with vocal effort (called “cSEL” for “cumulative sound exposure level” in the paper), suggesting louder or more frequent calling is more energetically expensive. Adapted from Holt et al., 2015.

The total metabolic cost of vocalization was calculated as the difference in oxygen consumption rates while vocalizing, and while at rest. Metabolic cost increases with vocal effort (called “cSEL” for “cumulative sound exposure level” in the paper), suggesting louder or more frequent calling is more energetically expensive. Adapted from Holt et al., 2015.

Discussion

Trackbacks/Pingbacks

  1. […] time readers may have noticed how often acoustics comes up in the study of the ocean. This is no coincidence and there are myriad reasons why. The most basic, however, has […]

  2. […] recruitment, feeding, territorial behaviors, and reproduction. Check out this oceanbites post on noise impacts on dolphins! There are still many questions about noise, both natural and anthropogenic, in the marine […]

Post a Comment

Instagram

  • by oceanbites 4 days ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 weeks ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 weeks ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 2 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 3 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 4 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 4 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 5 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 5 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 6 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 6 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 7 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 7 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
  • by oceanbites 8 months ago
    Today is the day of  #shutdownacademia  and  #shutdownstem  and many of us at the Oceanbites team are taking the day to plan solid actions for how we can make our organization and the institutions we work at a better place
  • by oceanbites 8 months ago
    Black lives matter. The recent murders of Ahmaud Arbery, Breonna Taylor, and George Floyd have once again brought to light the racism in our country. All of us at Oceanbites stand with our Black colleagues, friends, readers, and family. The
WP2Social Auto Publish Powered By : XYZScripts.com