you're reading...

Climate Change

Written in bone: what ancient Pacific Cod can tell us about sea level rise and mercury


Murray, M., McRoy, C., Duffy, L., Hirons, Am., Schaaf, J., Trocine, R., Trefry, J., (2015). Biogeochemical analysis of ancient Pacific Cod bone suggests Hg bioaccumulation was linked to paleo sea level rise and climate change. Fronteirs in Environmental Science. Vol3   doi: 10.3389/fenvs.2015.00008

Image credit: Sam Thomas (flickr Creative Commons)

Image 1: Cod Skull (Image credit: Sam Thomas, flickr Creative Commons)



Pacific cod (Gadus macrocephalus) plays a vital role in the Gulf of Alaska.  Paific cod are widely distributed and hold ecological and commercial value. Cod’s importance stretches back over 7,500 years ago when initial human settlements relied heavily on marine resources. Murray et al., 2015 tested preserved, ancient Pacific cod bones at an archaeological site that dates back to the Holocene—an era of deglaciation (melting glaciers) and sea level rise in Alaska that was responsible for carving out present day continental shelves. Through biogeochemical analysis, the authors were able to study mercury (Hg) levels across almost the entire Holocene in one species—the first kind in Alaska. The results of the study offers a glimpse into how climate change and sea level rise affected human populations in the past, and what forewarning it may hold in light of recent climate change.


The Study:

The archaeological site in this study is situated on a small island within the Katmai National Park and Preserve in Alaska, and is dubbed XMK-030 (see Image 2). The sediments on the site range from 7600-4100 before present (BP) and are associated with remnants of human occupation such as shell and bone middens (a fancier term for garbage pile). Jaw bones from twenty different ancient Pacific Cod were recovered and sampled for both isotopes (δ13C and δ15N) and Hg, while additional bones were analyzed solely for either isotope content or Hg. Testing for δ13C and δ15N ratios can reveal if there was any change in marine production or food webs. For example, δ13C can be used to trace food sources, so changes in this value may represent changes in oceanic production. δ15N on the other hand, tracks a species’ position in the foodweb, so changes in this value may indicate changes in food web structure (For more detail on nitrogen isotopes, see this past oceanbites post).  Sixty-three samples of modern Pacific Cod tissue from the same area were also tested for Hg.  In order to extract collagen from bones, small amounts of bone were exposed to sound waves, demineralized in acid, heated, precipitated and freeze-dried. While the original paper can provide the full rundown, some interesting steps in testing for mercury involved washing bones with detergent, rinsing them with reverse-osmosis water, drying them in an oven, then subjecting them to a suite of chemicals in order to digest, dilute and reduce. Testing modern day cod tissues involved drying, digesting them with acid, and heated until soft tissues were dissolved.

Image 2: Katmai National Park and Preserve. The study site was on a small island within this park (Image Credit: Martha de Jong-Lantink, flickr Creative Commons)

Image 2: The study site is located on a small island within the Katmai National Park and Preserve (Image Credit: Jeanne Schaaf)


Findings & Significance

Image 3: Image 3: δ15N and δ13C over time.  Taken directly from paper: Murray et al., 2015

Image 3: Image 3: δ15N and δ13C over time. Taken directly from paper: Murray et al., 2015

Over time, δ15N values were constant meaning that the trophic level, or the position in the food chain of ancient cod did not change. However, δ13C values increased due to either higher phytoplankton productivity or transport of sediments rich in plant matter to the bottom of the sea suggesting that coastal flooding did indeed occur (see Image 3). The results of mercury levels across time were interesting. Mercury concentration in bones peaked in concert with the melting of glaciers and sea level in the early to mid Holocene (52-4600 BP) then decreased when sea levels became stable. The authors suggest that as sea level increased, large expanses of terrestrial areas along the coast became inundated with water. Mercury that occurs naturally within Alaska mountains and soils, and bound within plant material became submerged and therefore, available to enter into the marine food web.

Mercury in seafood may be on some people’s radar, but it may be served up fried, steamed and baked on more plates in the near future.   Mercury is a persistent and toxic compound that is easily taken up through respiratory and digestive systems.   As a persistent compound, it can build up or ‘bioaccumulate’ in individual organisms, and up through the food chain. High accumulation of mercury in the body can affect central nervous system, and hence behaviour, development and growth. The findings from this study are significant, especially in light of current climate change and imminent sea level rise. They can help us predict and mitigate mercury levels in wildlife, thus safeguarding ecosystem and public health.



No comments yet.

Post a Comment


  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 3 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 8 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 9 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com