//
you're reading...

Plastic

You are what you eat: Microplastics travel from food to the brain

Reference: Crooks, N., Parker, H., & Pernetta, A. P. (2019). Brain food? Trophic transfer and tissue retention of microplastics by the velvet swimming crab (Necora puber). Journal of Experimental Marine Biology and Ecology, 519, 151187.

If a plastic bottle falls into the ocean, it does not float around forever. Instead, it is eventually broken down into smaller plastic particles, called microplastics. Oceans are full of microplastics that result from degradation of everyday use plastic products. Even though microplastics are less than a quarter of an inch big, they threaten marine animals by entering their diets.

Once eaten, microplastics remain in the digestive system  of any living creature for an indefinite amount of time. They can cause internal injuries, release toxins, or even fool the stomach by creating a fake sense of fullness without providing any nutrients. This possible impact  of consuming microplastics is exacerbated by the fact that marine animals do not even need to eat these particles directly for them to show up in their tissues. They can accumulate microplastics by eating organisms down the food chain who have already retained them in their own bodies.

Velvet swimming crab is also known as the devil crabs because of its red eyes and aggressive behavior. It lives in the waters of the British Isles. Image credit: Matthieu Sontag, Wikimedia Commons

Filter feeders, like mussels, directly retain microplastics by filtering plastic-contaminated water. Animals that eat those mussels retain the microplastics in their own tissues, passing them on again if eaten by other animals in a process called bioaccumulation.

Bioaccumulation of microplastics can be harmful. Some marine animals plastic particles in their reproductive organs have been found to have a harder time mating and procreating. If crabs, fishes, or oysters cannot make babies, then the survival of those species is at risk. Through bioaccumulation of plastic, this risk could be transferred to other species in the food chain as well.

 

Catching crabs

To study bioaccumulation of microplastics in the body, a group of scientists from the University of Brighton in the United Kingdom turned to velvet swimming crabs. This crab species, nicknamed the devil crab for its belligerent nature and red eyes, feeds on fish and smaller prey like mussels, making it a convenient model for investigating bioaccumulation.

The Trojan mussels

The scientists obtained male velvet swimming crabs from a fishery off the British coast and secured mussels that would become vessels for delivering microplastics to the crabs. Once in the lab, the mussels were placed in water with tiny fluorescent microplastic beads that glow in green under a microscope.

In a little over an hour, the mussels had filtered the plastic beads from the water and retained them in their tissues. The crabs feasted on the “microplastics-spiked” mussels, and were put on a diet  of plastic-free mussels. The researchers then sacrificed and dissected some of  the crabs to search for the plastic particles in their tissues.

They isolated samples of crab tissues from different parts of their bodies and ran them through a machine called a flow cytometer, which measures how much fluorescence – or amount of colored light – was emitted from the tissue of interest. From this experiment, they calculated the amount of plastic in each type of tissue.

Plastic in the body

As soon as one hour after eating their microplastics-spiked mussels meal, the crabs had predictably retained the plastic particles in their stomachs. More surprisingly, these particles had also traveled to other organs. For the first time, microplastics were shown to reach the brain of a crustacean species.

Three weeks after eating the microplastics-spiked mussels, the remaining crabs still had the particles in their tissues. Over time, the amount of particles had only decreased in the gills and stomach – possibly because these organs have a high liquid turnover, which may have helped to wash them out. However, the amount of particles in the brains and testes had barely decreased; it was especially high in the testes, peaking at three weeks after the meal.

Food for thought

The University of Brighton team found that the plastic particles diffused from the crabs’ food to their tissues, where they could remain for a long time. This ability of microplastics to travel from food to different parts of the body is very concerning because it may impact many species in the food chain, including humans.  Marine animals aren’t alone in their consumption of microplastics – humans have been found to injest plastic particles as well, in part by eating contaminated seafood. Along with many other marine creatures, velvet swimming crabs are seafood. By eating crabs that are loaded with microplastics, we could possibly end up with plastic particles in our own brains.

The good news is that we – or our food – are unlikely to consume mussels that are filled to the brim with microplastics, as was the case in this study. This is because the researchers placed the mussels in an extremely high concentration of plastic particles, far surpassing those in the oceans around the world. The bad news? By merely residing in tissues of the body, microplastics may have the power to harm their host  for the rest of their lives.

We don’t know yet how microplastics in the brain of might affect behavior  and well-being of any living creatures, but it is possible that these tiny particles may be very disruptive if they accumulate. As microplastics in the ocean are not going anywhere any time soon, this study is a somber reminder that plastic pollution is a threat not only to marine animals, but to humans as well.

Image source

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 2 hours ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 2 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 7 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 9 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com