//
you're reading...

Climate Change

An accidental find: Large quantities of microplastics are in Arctic sea ice!

Article: Rachel W. Obbard, Saeed Sadri, Ying Qi Qong, Alexandra A. Khitun, Ian Baker, and Richard C. Thompson, “Global warming releases microplastic legacy frozen in Arctic Sea Ice.” Earth’s Future, Vol. 2, pp. 315-230. doi:10.1002/2014EF000240, 2014

Background Information

Plastic pollution, particularly in the ocean, has unforeseen environmental hazards that could be toxic to many marine organisms. Marine plastic pollution commonly brings to mind large floating water bottles. However, most plastic pollution is composed of tiny plastic fragments and synthetic fibers barely visible to the naked eye. These small plastic particles are collectively called microplastics.

Plastics from Arctic Sea Ice. Credit: Y.-Q. Wong and A. Khitun, Dartmouth College

Figure 1: Plastics from Arctic Sea Ice. Credit: Y.-Q. Wong and A. Khitun, Dartmouth College

Microplastics are plastic particles generally less than 5 millimeters in size. For reference, the average household drinking straw is about 5 millimeters wide. Two of the most common ways microplastics are directly released into the ocean include cosmetics and washing machine drainage. Some personal care products, such as face washes, contain microbeads, those tiny blue spheres used to exfoliate dead skin cells. Plastic microbeads are washed down the drain and can end up in lakes and the ocean. Likewise, many textiles contain synthetic fibers that are released into the environment when we do laundry. Once in the ocean, microplastics can be ingested by marine critters and have potential toxic effects on the marine food web.

Far away from our bathrooms and Laundromats, in the Arctic Ocean, sea ice formation can scavenge (capture and accumulate) particles such as microplastics from seawater into its crystalline matrix (Figure 1). In fact, irregular shaped objects like microplastics, may even be scavenged more efficiently than other particles, such as diatoms. This means that microplastics are removed from the ocean and trapped into Arctic ice. However, as climate change progresses, and multiyear Arctic sea ice begins to melt, concentrated doses of microplastics could be re-introduced into the ocean- but to what effect?

Obbard et al. explored the distribution of microplastics in the marine environment to identify where microplastics are ending up in the ocean. This study will help identify regions that might be most impacted by microplastics today, as well in the future.

The Approach

Figure 2: A) Location of sea ice cores used in this study (map by Lieb-Lappen, Thayer School of Engineering at Dartmouth College). B) Sea ice core collected during the 2010 NASA ICESCAPE expedition (photo courtesy of D. Perovich, CRREL).

Figure 2: A) Location of sea ice cores used in this study (map by Lieb-Lappen, Thayer School of Engineering at Dartmouth College). B) Sea ice core collected during the 2010 NASA ICESCAPE expedition (photo courtesy of D. Perovich, CRREL).

Obbard et al. were not originally looking for microplastics in sea ice. In fact, they were looking for diatoms! They received 3 ice cores from a 2005 NSF-funded project and an additional ice core from a 2010 NASA-funded project to investigate diatom habitats in Arctic sea ice (Figure 2). As Obbard et al. began their study on the first ice core segment, they noticed 24 brightly colored objects which they identified as plastic. Needless to say, these researchers wanted to learn more about what types of plastic and how much was in these Arctic ice cores.

Ice cores were cut into sections of 50-100 cubic centimeters with a band saw, melted, and then filtered so that any particles larger than 22 microns, typical of most microplastics, would be retained. Filtered samples were dried and examined under a microscope as an initial screen for potential microplastics. Subsequently, a technique called Fourier Transform Infrared (FTIR) stereoscopy was used to confirm and categorize particles as plastic by identification of their unique chemical signatures.

 

The Findings

Microplastics and synthetic particles were found in all four sea ice cores ranging in size from 2 mm fibers to orange chips less just barely retained during the filtration process (~0.02 millimeters). Blue, black, red, and green were the most abundant colored pieces present.

Figure 3: (A) The total number of microplastic pieces per liter of seawater from the melted ice segments according to type of plastic polymer found. Plastics are all identified by using FTIR.  (B-F) Photographs of microplastic fragments where scale bar represents 1 mm. (B) polyester, (C) polypropylene, (D) polyester, (E) nylon, and (F) polyethylene.

Figure 3: (A) The total number of microplastic pieces per liter of seawater from the melted ice segments according to type of plastic polymer found. Plastics are all identified by using FTIR. (B-F) Photographs of microplastic fragments where scale bar represents 1 mm. (B) polyester, (C) polypropylene, (D) polyester, (E) nylon, and (F) polyethylene.

The concentration of microplastics, and other synthetic particles, ranged from 34 to 234 pieces per cubic meter of ice. This concentration is an order of magnitude higher than seawater microplastic concentrations from the North Atlantic and North Pacific gyre (whose concentrations average 0.34 and 0.12 particles per cubic meter of water, respectively.). This suggests that sea ice concentrates microplastics and could be a global sink for these synthetic particles.

The most abundant synthetic particle found, rayon, is not a plastic, but was so dominant in the sea ice the investigators included it. On average, rayon constituted 54% of the synthetic particles found in sea ice. Rayon is found in cigarette filters and clothing articles and is released into the ocean commonly through sewage effluent. Polyester composed 21% of the remaining synthetic particles, followed by 16% nylon, 3% polypropylene and ≤2% each of polystyrene, acrylic, and polyethylene (Figure 3).

Climate change has caused the thickness of multiyear sea ice to decrease. Using the lowest concentration of synthetic particles found (38 particles per cubic meter of sea ice), sea ice melting could release 1 trillion microplastic particles in the next decade. This additional microplastic and synthetic particle input poses addition risks to ocean critters if they ingest them.

Significance

This study adds to our understanding of where are microplastics going in the ocean, which has been confusing scientists for years. Despite increasing plastic production, the abundance of microplastics in seawater remains mysteriously invariant. This study suggests that microplastics may be scavenged by sea ice, which concentrates microplastic up to 10 times greater compared to sea water. Thus, sea ice may be an important sink for microplastics. Melting sea ice due to climate change threatens to re-release these particles into sea water with unknown consequences to the environment.

Discussion

Trackbacks/Pingbacks

  1. […] are everywhere in the ocean – they are found in extreme environments (i.e. within Arctic sea ice and deep water habitats) and can be ingested by a wide range of marine organisms such as mussels, […]

  2. […] (Rochman) Other microplastic articles http://oceanbites.org/an-accidental-find-large-quantities-of-microplastics-are-in-arctic-sea-ice/ (Obbard) http://www.mcsuk.org/what_we_do/Clean+seas+and+beaches/Campaigns+and+policy/Microplastics […]

Post a Comment

Instagram

  • by oceanbites 5 days ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 weeks ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 weeks ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 3 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 3 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 4 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 4 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 5 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 5 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 6 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 6 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 7 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 7 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
  • by oceanbites 8 months ago
    Today is the day of  #shutdownacademia  and  #shutdownstem  and many of us at the Oceanbites team are taking the day to plan solid actions for how we can make our organization and the institutions we work at a better place
  • by oceanbites 8 months ago
    Black lives matter. The recent murders of Ahmaud Arbery, Breonna Taylor, and George Floyd have once again brought to light the racism in our country. All of us at Oceanbites stand with our Black colleagues, friends, readers, and family. The
WP2Social Auto Publish Powered By : XYZScripts.com