you're reading...


Bite or Flight: How Seaweed Can Shape Feeding Behavior in Fish

What is a forest without trees or a coral reef without coral? Neither a forest nor a coral reef. Entire ecosystems are made possible by the living flora that define them; they provide shelter and hunting grounds for the animals that live in them. But what happens when the building blocks of these ecosystems are replaced or changed? We see this happening with kelp forests in Maine today. Large patches of this tall, billowy algae are beginning to disappear as the Gulf of Maine warms with climate change. As researchers at the University of New Hampshire watched the kelp forests decline, they wondered what would happen to the animals that live there. By looking at the behavior of one fish species, the cunner, they determined that change is indeed on the horizon, but whether this change is good or bad is anyone’s guess.

Figure 1: Saccharina latissima, the disappearing kelp species in Maine, can grow up to 16ft long. From Wikimedia Commons.

In the southern Gulf of Maine, large kelp beds of Saccharina latissima, a yellow brown kelp that can grow up to 16 feet tall, have been the dominant habitat. However, the region is one of the fastest warming bodies of water in the word, and kelp, a cold-loving species, has begun to be replaced by squat, less complex turf algae. Since more complex algae can provide more hiding places and habitat for animal species, this could be cause for concern. To investigate the impacts of this change, the researchers decided to examine the behavior of cunner, an abundant fish in the waters of Maine. Cunner was the perfect test subject for several reasons: 1) the fish is an opportunistic feeder, eating a number of smaller animals like isopods and lobsters that it finds; 2) cunner is eaten by other important species like sculpins, searobins, and even seals; and 3) cunner rely on these seaweeds both for protection from predators and as hunting grounds. The researchers thus decided to investigate the differences in behavior of the cunner using three methods, including field observations at various locations in the Gulf of Maine, a refuge experiment to see which kind of algae the fish preferred to hide in, and a predation experiment to test cunner’s ability to find prey in different types of algae.

Figure 1: Cunner. From Wikimedia Commons.


Researchers observed fish in the field at 9 separate locations in the southern Gulf of Maine using video footage taken from July and August in 2015 and 2016. Each site was categorized as being dominated by kelp, dominated by turf algae, or being a mixture of the two. Researchers reviewed the footage, marked how many times the fish looked for shelter, how many times they searched for food, and what kind of algae they went to at each location.

For the refuge experiment, three species of algae were placed in a tank: 1) Dumontia contorta, a low-lying turf algae; 2) Dasysiphonia japonica, a slightly taller red alga; and 3) Ulva lactuca, a leafy green alga. U. lactuca replaced kelp in the experiment because it is still small enough to fit in the tank while providing a similar amount of protection from predators. One cunner was then placed in the tank with the three algae and observed undisturbed for an hour.

In the predation experiment, one of four separate species of algae were placed in a tank, and thirty isopods, tiny crustaceans, were released into the tank. A cunner was then placed in each tank for 3 hours. Afterward, the surviving isopods were counted, and the cunner’s ability to feed was compared to tanks without algae.

Figure 3: D. contorta is a low-lying, simple alga. Cunner sought shelter in this alga the least of all tested species. From Wikimedia Commons.

Results and Significance

The researchers found that the kind of algae available to cunner does change their behavior. In areas dominated by kelp, or where kelp was at least present, cunner preferred overwhelmingly to use the tall, complex algae as a place to hide. They sought refuge three times more in kelp than when they were in areas covered by low-lying turf algae. In the experiments testing refuge choice, cunner preferred U. lactuca, the stand-in algae for kelp. In fact, cunner seemed to prefer algae that were taller when seeking hiding spaces.

While the algae type had a clear impact on the hiding behaviors of cunner, the type of algae did not seem to influence cunner predatory behavior. Given kelp, turf algae, or simple algae, cunner consumed a similar number of isopods among these algae types.

It is clear that the type of algae available impacts how cunner behave, but what isn’t clear is what will happen if the cunner’s preferred algae, kelp, continues to disappear. While cunner will hide in turf algae, the researchers spotted them more easily in turf algae than in kelp. Could this mean that their numerous predators would be able to find them more easily? Since the experiment did not measure predation, we don’t have an answer to this.

Another thing that may change is how effectively cunner can feed. The experiment did determine that cunner have no more trouble eating isopods depending on the species of algae. However, cunner are opportunistic feeders; they eat a wide variety of animals. For example, cunner eat lobsters, which find shelter in kelp beds when they are young (Wahle and Steneck 1991). If kelp disappears, lobsters may be more vulnerable to being eaten by cunner, but cunner may also be more vulnerable to being eaten by their predators. Given how integral the lobster fishery is to the Maine economy, the implications of this change could be either positive or negative. What is evident is that a shift in the algae in Maine will change how animals behave and interact; whether or not the change is a good one is yet to be seen.

Brandon S. O’Brien, Kristen Mello, Amber Litterer, Jennifer A. Dijkstra. Seaweed structure shapes trophic interactions: A case study using a mid-trophic level fish speciesJournal of Experimental Marine Biology and Ecology, 2018; 506: 1.

Richard A. Wahle, Robert S. Steneck. Recruitment habitats and nursery grounds of the American lobster Homarus americanus: a demographic bottleneck?. Marine Ecology Progress Series, 1991; 69: 3. pp 231-243.


No comments yet.

Post a Comment


  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 9 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 10 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com