you're reading...

Climate Change

A call for clouds in climate models

Article: Schneider, T., C.M. Kaul, and K.G. Pressel. Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. Nature Geoscience, 12, 163-167 (2019).

This article was originally posted in March 2019. It has been re-posted here following a server issue in which the original post was accidentally removed. To learn more about the most recent work from Dr. Tapio Schneider’s research group, some of which uses machine learning to improve climate modeling, visit his research group’s website.

In Spring 2018, I visited the Kavli Institute for Theoretical Physics (KITP) in Santa Barbara, California for a conference on Frontiers in Oceanic, Atmospheric, and Cryospheric Boundary Layers. For five days, oceanographers, atmospheric scientists, and climate researchers convened to discuss the many ways in which planetary boundary layers – horizontal slabs of air and water constrained by interfaces like the ocean surface – influence our weather and climate. I went there to present a poster for my own work on the effects of surface waves on wind. In addition, I spent some time enjoying the beautiful spring weather before wildfires ravaged nearby forests that summer amid unseasonably warm and dry conditions.

One of the invited speakers – Dr. Tapio Schneider of the Climate Dynamics Group at California Institute of Technology – discussed how global climate models (GCMs) struggle to accurately predict climate without representing more complex cloud physics – namely, cloud formation processes that are intricately linked to chaotic air movement that occurs within atmospheric boundary layers. A big challenge for climate researchers is to figure out how to tackle the low spatial resolution climate models typically use. Within a network of interlinked grid cells, complex, multi-scale motions in the atmosphere are typically averaged into one value over tens  of kilometers (typically 60 by 90 miles).

Considering clouds and climate

Figure 1: Spatial grid for a global climate model (GCM). Each box accounts for a range of small-scale processes, like surface wave dynamics and cloud formation. (Image credit: Climate Dynamics Group, Caltech)

In this coarse simulation grid, boundary layer processes like wave growth and cloud formation are too small in scale to simulate with much complexity; instead, climate models account for them by assuming that their large-scale impact can be averaged over large stretches of space using empirical data. With current climate models struggling to recreate past climates, researchers like Dr. Schneider question whether important details about the complexity of small-scale physics are being overlooked.

Dr. Schneider and co-authors sought to address this issue in a study that made headlines. By using a model called large eddy simulation (LES) that resolves the spatial scales of chaotic motion in clouds, they inferred how the atmosphere might respond to future conditions in which humans have done little to curb carbon dioxide emissions. They simulated the cloud dynamics and solar energy balance over a patch of ocean in the subtropics, where layers of low-lying, highly reflective stratocumulus clouds are known to form amid persevering wind patterns.

It’s all about balance

Figure 1: Pathways of solar radiation causing the greenhouse effect, including high- and low-lying clouds (Image Credit: NASA)

Energy from the sun takes a number of paths when it enters our atmosphere. Some of it travels through the entire layer and warms the Earth’s surface, while some is reflected back to space by bright surfaces like clouds and ice. At the same time, gases such as water vapor (moisture) and carbon dioxide in the atmosphere easily absorb the sun’s energy in the form of longwave (or infrared) radiation – this is what is known as the greenhouse effect (see Fig. 2).

All of these different pathways amount to net zero planetary heat gain if the atmosphere’s overall temperature isn’t changing – but it is.  The idea that warming could become worse, and even beyond our control, has troubled many climate researchers who note that ice and clouds – both reflective surfaces that maintain the Earth’s balance of solar energy – are expected to be reduced in warmer conditions.

The results of this simulation suggest that stratocumulus clouds – which are known to deflect the sun’s energy over a significant portion of the world’s oceans – could begin to break up and eventually disappear altogether as carbon dioxide concentrations rise. Today, those concentrations are around 400 parts per million (ppm) on average. What happens when they rise to 800 ppm, or even 1600 ppm – which could be possible in the next 100 to 200 years if we do not reduce carbon emissions?

In addition to 4°C of warming from these emissions, the study suggests that the loss of stratocumulus clouds could add an additional 8°C to average temperatures in the atmosphere. This degree of warming has been contextualized by researchers as a condition similar to when crocodiles and palm trees inhabited the Arctic over 50 million years ago. In this simulation, clouds did not return to Earth until carbon dioxide concentrations dropped below 300 ppm – a much lower level than even our current conditions.

The cause of a cloudless world

According to the study, a world without clouds could be partially caused by a more opaque (carbon-filled) upper atmosphere above the height where these clouds typically form. More carbon dioxide in the upper atmosphere means more solar radiation is absorbed at these heights, bringing its temperature closer to that of the warmer lower atmosphere. This warming weakens convection – the chaotic mixing driven by temperature differences that connects the upper atmosphere to the sea surface by vertical movement of air. With weaker convection, the atmosphere has a weaker connection to its moisture supply at the sea surface. At the same time, a warmer environment would also result in more evaporation that provides more moisture to the lower atmosphere. However, because of weak convection, this extra moisture would not reach the upper atmosphere to form clouds; instead, it could draw in warm, dry air from nearby that would further destroy clouds.

The study notes some uncertainties on larger scales; connecting small-scale phenomena like clouds to weather and climate patterns is not an easy task. Regardless, these findings highlight the significance of clouds in the climate system, and a key shortcoming in our current GCMs. Perhaps the little things matter after all.



No comments yet.

Post a Comment


  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 6 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 9 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com