//
you're reading...

Book Review

Coral Reef Restoration Through Human-Assisted Evolution

The Paper: van Oppen, M.J.H., Oliver, J.K., Putnam, H.M., Gates, R.D. Building coral reef resilience through assisted evolution. PNAS. Doi.10.1073.pans.14223011112.

 

Introduction:

Recently, we have been witnessing a disturbing decline in coral health and coral reef coverage worldwide. Raising sea temperatures, pollutants (like microplastics! Read yesterday’s post  for more info) storm events, and extensive trawling are just a few of the factors that can be attributed to the worsening state of coral reefs. Many of these issues are at least partly caused by human actions. While organisms are able to evolve to deal with environmental changes, the process takes a long time. Right now major environmental changes (like ocean warming and ocean acidification) are occurring at a relatively fast pace, posing threats to corals reefs.

When stressed by increased water temperatures, corals tend to undergo bleaching events. Essentially, bleaching occurs when the coral expels its algal symbionts. These symbionts live within the coral, providing the coral with nutrients in exchange for a place to live. Because these symbionts provide the coral with food, a coral left without its little helpers for too long may not be able to adequately feed itself and is more susceptible to disease. Ocean acidification is also predicted to hinder the growth rate and diminish health of corals by making it more difficult for them to build their skeleton. For a primer on how ocean acidification impacts the ocean, watch this short video:Ocean-acidification explained with a soda maker . With changes like these occurring at a relatively fast rate, there is concern that corals will not be able to keep pace with the environmental changes and will suffer extreme population depletions.

Some scientists, such as the authors of this paper, have proposed a novel coral management strategy which would help corals evolve at a faster pace than they would under natural conditions. This technique is called human-assisted evolution. This phrase may sound a bit frightening at first, but believe it or not, human-assisted evolution is nothing new!

 

Human-Assisted Evolution:

Fig. 1- Human-assisted evolution

Figure 1: Some outcomes of human-assisted evolution include a) wide variety of dog breeds (image from bbc.co.uk), b) rice which has been genetically altered to increase nutrient content (image from wantchinatimes.com) and c) cattle bredfor increased meat production (image from depletedcranium.org)

Humans have been utilizing evolutionary processes to create beneficial alterations to organisms for thousands of years. Who loves their golden retriever? You can thank selective breeding for the wide variety of dog breeds present today (Fig 1a). Selective breeding is a process by which humans chose specific desirable traits and selectively breed individuals to, overtime, create a new dog (or horse, or cat, etc). A variety of animals and even plants and microbes have been selectively breed for human benefit.

More recently, techniques like acclimatization (a process by which an organism adapts to changes in the environment over the course of its own lifetime), trans-generational acclimatization (where the environmental changes can force adaptations that are actually handed down to the next generation), and genetic modification have been utilized in areas such as agriculture and farming. These techniques have given rise to crops that are able to withstand more stressful environments, plants capable of increased nutrient values (Fig 1b), and increased growth rates and meat yields in some livestock (Fig 1c). Though controversial, current technology allows us to alter organisms at a faster rate than would normally occur through the natural processes of evolution.

 

The Current State of Coral Reef Management:

Figure 2: Coral gardening- pieces of coral are harvested off of healthy reefs and allowed to grow before being transplanted to a degraded reef habitat.

Figure 2: Coral gardening- pieces of coral are harvested off of healthy reefs and allowed to grow before being transplanted to a degraded reef habitat.

Coral reef management is of high priority and ongoing research is aimed at effectively protecting degraded reef habitats. Currently, the preferred method is coral “gardening” (Fig 2). Coral clippings are taken from healthy reef systems and are grown up until they are larger. Once the coral reaches an optimal size, the coral colonies are transplanted onto a degraded reef. With some luck, the gardened coral colonies will settle happily in their new home and can help restore the degraded coral reef. The authors agree the current restoration strategies should continue and that additional research on management strategies is needed. Moreover, they propose the novel use of human-assisted evolution to further aid the restoration of diminishing reef populations.

Assisting Coral Reef Evolution:

Based on the biology of corals and the current human-assisted evolutionary protocols used in terrestrial organisms, the authors propose four main types of human-assisted evolution to be investigated.

  1. Exposing natural coral stocks to stresses to induce acclimatization and transgenerational acclimatization. By forcing the native corals to undergo stresses similar to those that they may experience under changing environmental conditions, the corals may boot out their current symbionts and replace them with new symbionts that are more beneficial under altered environmental conditions. This strategy will take less time than natural genetic adaptation and (due to the mechanism by which symbionts are transferred from parent to offspring in coral) may last for several generations- hopefully allowing the corals to live to fight another day in the face of rapid environmental changes.
  2. Actively modifying the symbionts associated with coral reefs. There are numerous types of coral symbionts, some of which have become specially adapted to certain environments (like warmer areas for instance), but may not be found in every coral reef habitat. This technique would actively take strains of the symbionts which have naturally developed to tolerate specific environmental conditions and introduce them into coral colonies in need of the specific environmental tolerance. (for example, take those symbionts that have evolved in warmer oceans, and introduce them into an area where coral are dying due to warming temperatures and hope that the change in symbiont allows the coral to survive).
  3. Genetically altering the coral symbionts to be better suited to changing environmental conditions. This differs from strategy #2 because instead of utilizing naturally occurring symbionts, the research would focus on actively changing the genetic structure of these symbionts to be better suited for a variety of environmental conditions. These would be “lab-grown” strains of symbionts that would then be introduced into wild coral populations. So for example, researchers may be able to induce changes to the symbiont’s genetic structure, making them more tolerant to environmental stressors (i.e. by exposing the symbiont to a mutagen like UV light). The mutated, stress-tolerant symbiont can then be introduced into natural coral populations, hopefully allowing them to be better adapted to environmental change.
  4. Selectively breeding coral strains that are better suited for specific environmental conditions. This is a lot like breeding dogs- start out with your generic dog. If you want an extremely tall dog, you take the two tallest puppies you can find and you breed them. That litter should produce a higher percentage of taller dogs.You then take your two tallest puppies from that litter and breed them to produce a litter with an even higher percentage of taller individuals. You keep doing this for multiple generations and BANG! you have yourself a Great Dane! Same for corals- breed corals under high temperature, for instance, and take those that survive best in that condition and selectively breed those individuals for generations until you have ideally produced a line of coral that can withstand higher temperatures.

 

Conclusions

 Human-assisted evolution is still a controversial topic for coral reef management. The authors do not discuss the potential issues that may be presented by trying to alter the course of evolution in organisms. They merely bring the potential management strategies to the table to try and start a discussion. The purpose of their article is not to urge scientists to begin altering natural coral populations in the wild. Instead, they encourage scientists to begin looking into the possibilities, the pros, and the cons of aiding coral evolution through human assistance as a potential management and restoration technique.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 3 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 4 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 5 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 7 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 8 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 9 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 9 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 10 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 10 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 11 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 11 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 12 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 12 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 1 year ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com