//
you're reading...

Fisheries

Echoes in the deep: Robots with fish finders

Article: Mark A. Moline, Kelly Benoit-Bird, David O’Gorman, and Ian C. Robbins, 2015: Integration of scientific echo sounders with an adaptable autonomous vehicle to extend our understanding of animals from the surface to the bathypelagic. J. Atmos. Oceanic Technol., 32, 2173–2186. doi: http://dx.doi.org/10.1175/JTECH-D-15-0035.1

Background

You may know that some animals use sound to ‘see’ their environment, like bats and dolphins, in a process called echolocation. And you may know that humans have produced our own echolocation devices like sonar and commercial fish finders. In this study, scientists have passed this technology on to underwater robots. Using sound to identify objects under water is useful because sound travels much farther than light in water. This means that even if water is murky or simply too deep for much light to penetrate, echosounding devices can still identify objects.

The basic principle behind an echosounder is a device that emits a short pulse of sound, and then listens for the returning echo to bounce back off of nearby objects. The standard technique today builds on this concept by emitting the pulse from multiple transducers (think of them like speakers that can also listen for noise) simultaneously, in slightly different directions. By analyzing how long the sound takes to return to each transducer, the echosounder can determine both how far away and in which direction an object is. Additionally, the intensity and other properties of the sound returned can help determine the size and shape of the object (Fig. 1), and sometimes even its internal properties. For instance, many fish show up well on echosounders because they have swim bladders (pockets of gas) that return very strong echoes. Lastly, using different frequencies of sound ensures that echosounders can identify all the things a researcher might be interested in, as different materials reflect certain frequencies better than others. Higher frequency sounds can also reveal more detail than lower frequency sounds. The technology used in these devices has progressed to the point where creatures as small as zooplankton can be identified (sometimes to the species level) and counted.

Figure 2: The REMUS 600 AUV, with echosounder components in the middle.

Figure 2: The REMUS 600 AUV, with echosounder components in the middle.

There is a problem that arises however. High frequency sound doesn’t penetrate water as far as lower frequency sound (although still usually farther than light), so any multifrequency echosounder is limited in depth by its highest frequency. Typical scientific echosounders on ships can only penetrate to about 600 meters, but many interesting fish and zooplankton species live deeper. The simplest way to address this problem is to get the echosounder closer to the depth of the species of interest. Scientists have tried to tow echosounders off of ships, but the platforms are sometime unstable and the cables involved are a bit of a hassle.

This paper reports research by a team that integrated echosounders into a REMUS 600 Autonomous Underwater Vehicle (AUV), an underwater robot they think will provide a stable, nimble, and long lasting platform to get their echosounders where they need to be.

Methods

The REMUS vehicle (Fig 2.) is large enough to fit off-the-shelf echosounders, while still being small enough to easily deploy and recover from a research ship. It can also dive to 600 meters, essentially doubling the depth the echosounders could reach if they were on a ship. The team constructed a custom housing (Fig. 3) to put the echosounders into, and also packed in two separate computer systems to process the acoustic data. These are used to process the acoustic data gathered in almost real-time, so the vehicle can be programmed to identify an object of interest and follow it. In addition to this custom payload, the REMUS has a compass and GPS for navigation, and a suite of standard sensors for sensing the bottom and various water properties, as well as enough power for up to 70 hours of travel. All these features make it a very adaptable robot, and its only about 3 meters long!

Figure 2: The REMUS 600 AUV, with echosounder components in the middle.

Figure 2: The REMUS 600 AUV, with echosounder components in the middle.

Figure 3: A detailed look at the custom echosounder setup (A-C), and an image of the vehicle preparing to dive before a mission (D).

Figure 3: A detailed look at the custom echosounder setup (A-C), and an image of the vehicle preparing to dive before a mission (D).

 

 

 

 

Findings

To test their custom system, the researchers conducted two test missions to check that everything worked, and two primary missions, which had actual scientific goals (Fig. 4). They found that the setup was very stable and level on both shallow and deep missions, features that are very important for the echosounders to perform well. If the echosounder platform moves too much (e.g. from waves at the surface) in-between pulses, the sensor may receive only a portion of the returned sound, producing an inaccurate intensity reading. Based on some of the ship’s roll during their testing, the echo intensity returned could vary by up to 50%, while the AUV had almost no roll at all. The vehicle stuck to its programmed path fairly well, surfacing periodically to get a GPS fix to correct its course.

Figure 4: The four missions discussed (B has two missions) and an image of the craft being deployed.

Figure 4: The four missions discussed (B has two missions) and an image of the craft being deployed.

The echosounders also performed very well. Background noise from surrounding electronics and things like bubbles near the surface were reduced compared to a ship based echosounder; the detection range for an object increased by around 30 – 40% in the AUV setup (Fig. 5). Ship based echosounders also frequently encounter bubbles at the surface that obscure the data, a problem that the AUV never had once it dove a few meters down. Getting the echosounders closer to the targets with the AUV also clearly worked well, as shown in Figure 6. The ship could barely detect even a few organisms at depth with the 120 Hz transducer, whereas the AUV detected an entire layer of organisms. Even when the ship could detect organisms, the AUV returned a much higher resolution image, giving betters count and size estimates.

Figure 5: A side-by-side comparison of ship and AUV data from both echosounders. You can see that the AUV does a better job of capturing separations between different layers. The green section in panel C is essentially all noise, obscuring any useful data, but the AUV avoided any noise problems.

Figure 5: A side-by-side comparison of ship and AUV data from both echosounders. You can see that the AUV does a better job of capturing separations between different layers. The green section in panel C is essentially all noise, obscuring any useful data, but the AUV avoided any noise problems.

Figure 6 : A detail of one of the missions. It’s clear that the AUV captures more data at depth than the ship, and with much more detail.

Figure 6 : A detail of one of the missions. It’s clear that the AUV captures more data at depth than the ship, and with much more detail.

Broader Impacts

This modified REMUS AUV has essentially opened a whole new region of the middle ocean (a.k.a the mesopelagic) to acoustic study. This area is home to many important commercial fish species and their prey, and studying them acoustically allows for larger areas to be surveyed faster. This proof of concept device also paves the way for projects that ships can’t perform, like studying how some fish might avoid ships (it’s hard to tell if fish are avoiding the ship you’re on because they aren’t there!). Although I only mentioned them briefly, the additional sensors on the AUV can provide more data on what type of water certain organisms are observed in. The programmable nature of the AUV also makes it much less tedious for researchers to cover large areas or easier to track a particular target animal without having to maneuver a ship.

Engage

What do you think the researchers might find using this system? What other environments or situations would an autonomous vehicle be useful in?

Discussion

Trackbacks/Pingbacks

  1. […] – from using sound in the ocean. Tomorrow, Austen will cover an article discussing the use of autonomous robots for monitoring fish populations. Wednesday is a double header: Megan will look at whale earwax and […]

Post a Comment

Instagram

  • by oceanbites 3 weeks ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 2 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 3 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 5 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 6 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 6 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 7 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 7 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 8 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 9 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 9 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 9 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
WP2Social Auto Publish Powered By : XYZScripts.com