//
you're reading...

Book Review

Mangrove Takeover Impacting Salt Marshes

Paper: Guo et al. 2016. Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover. Ecology. DOI: 10.1002/ecy.1698.

Background

Fig. 1. Encroaching Mangrove in Homestead, FL Source: G. Gardner, National Park Service, via Wikimedia Commons

Fig. 1. Encroaching Mangrove in Homestead, FL
Source: G. Gardner, National Park Service, via Wikimedia Commons

Due to global changes in climate, vegetation communities worldwide are shifting. Ecosystem functions and properties may be altered greatly by shifts between dominant plants with different characteristics. On land, for example, woody plants encroaching on grassland or savanna systems can alter diversity, albedo (the reflective properties of the habitat), temperatures, seedling recruitment, etc. It is likely that shifts from salt marsh grass habitats to mangrove-dominated habitats would similarly alter ecosystems. Coastal wetlands provide ecosystem services, including shoreline protection, carbon storage, and support of higher trophic levels. Threats to these habitats include climate change, rising sea levels, increasing nutrient loads, land-use change, and overfishing. Mangroves are encroaching into salt marshes on a global scale, but this phenomenon has been little studied by comparison to other changes to vegetative communities. Black mangroves have been known to periodically expand into salt marshes during time spans with warm winters but will die back when there are severe freezes. Cover of mangroves in Texas increased by 74% from 1990-2010. They are expected to replace salt marshes along much of the U.S. coast of the Gulf of Mexico before 2100. But we don’t know what that will mean for ecosystem functions.

 

Methods

Fig. 2. Red Mangroves Source: Steve Hillebrand, US Fish and Wildlife Service, via Wikimedia Commons

Fig. 2. Red Mangroves
Source: Steve Hillebrand, US Fish and Wildlife Service, via Wikimedia Commons

Researchers conducted a manipulative experiment in which they varied the mangrove cover in 10 plots that measured 24 m by 42 m (79 ft by 137 ft). These plots were all located on Harbor Island, Port Aransas, TX. Each plot had 112 cells (3m by 3m or 9ft by 9ft), each of which was cleared of mangroves to create plots ranging in mangrove cover from 0% to 100%. The researchers monitored microclimate and plant community composition, collected soil cores, measured light intensity, surveyed wrack (the deposition of algae, plant leaves, and seagrass), and measured sediment deposition. They also conducted bird counts.

 

Results

Fig. 3. Types of Relationships observed in this study, created by author Rebecca Flynn. This figure does not supply numbers on the y-axis so as no to misrepresent the findings of the study. These figures are meant to illustrate the type of relationships found between mangrove cover and the various factors.

Fig. 3. Types of Relationships observed in this study, created by author Rebecca Flynn. This figure does not supply numbers on the y-axis so as no to misrepresent the findings of the study. These figures are meant to illustrate the type of relationships found between mangrove cover and the various factors.

Scientists observed an inverse relationship between wind speed and mangrove cover: when wind speed was highest, the mangrove cover was lowest. Light interception increased as mangrove cover increased. The relationship between mangrove cover and temperature was variable; the average air (at a level 1 m above the ground) and soil temperatures increased and then decreased with increasing cover, with a max at 50-70% cover.

Salt marsh plants expanded in gaps between mangroves. After two years, marsh vegetation cover was 80% at 0% mangrove cover, but dropped to 20% at 50% mangrove cover, then declined more gradually at higher cover. Beta diversity (a measure of the differentiation of species between habitats) increased with mangrove cover, peaking when mangrove cover was 22%, and then gradually declining.

Wrack decreased from 13% to 2% as mangrove cover increased. Where mangrove cover was <30% wrack penetrated further into plots than when mangrove cover was greater.

Sediment accretion declined steadily with mangrove cover as did soil organic content.

The number of birds observed declined as mangrove cover increased, with a rapid loss between 0% and 33% mangrove cover then plateauing. Most of the birds observed were herons, rails, ibis, and sandpipers.

 

Discussion

Fig. 6. Salt Marsh, Cumberland Island, Georgia Source: Trish Hartmann, Wikimedia Commons

Fig. 4. Salt Marsh, Cumberland Island, Georgia
Source: Trish Hartmann, Wikimedia Commons

Clearly changes in mangrove cover that can occur quickly with freezes or gradually as mangroves encroaching into salt marshes have an impact. In comparison to grassy salt marsh plants, mangrove trees are tall and woody and therefore act as more of a windbreak and buffer for wave energy contributing to shoreline protection. With mangrove cover of just 30%, the majority of wind attenuation occurred. Light interception increased with mangrove cover, meaning that the understory received little light when mangrove cover was high. The hump-shaped relationships of air temperature and soil temperature to mangrove cover are likely due to the loss of cooling from wind combined with the addition of cooling from increased shade.

Mangroves normally outcompete salt marsh plants, so when mangroves are maintained at lower cover, salt marsh plants can expand into the open space. However, at intermediate cover of mangroves, salt marsh plants didn’t expand as much as expected, so it can be inferred that mangroves inhibit salt marsh plant growth beyond the extent of their canopies. This may be achieved through shadow-casting or their root systems. Diversity being greatest at intermediate cover of mangroves suggests that complete encroachment will greatly reduce community diversity.

The decrease in wrack with increasing mangrove cover suggests fringe mangroves trap wrack deposits, which may influence where nutrients are deposited from the decomposition of the wrack. With more nutrients in the fringe zone, those trees could grow higher, produce more leaves, and extend root systems. The extra leaves that fall and the denser roots could lead to changes in sediment accretion.

The authors admit some complications with the results of their bird counts based on scale, but that the decrease in birds as mangroves increase has been seen before.

The researchers speculate that many of the results may be linked. For example, both increased wrack trapping and higher temperatures with higher mangrove cover could increase the organic matter content in soil.

 

Conclusions:

Shifts between vegetation communities can change wetland characteristics and functions. Managers should consider some of these results, especially relating to intermediate states and non-linear relationships, both of which may allow for conservation goals to be achieved in areas that are experiencing shifts. It will depend upon the priorities of the managers though how to maintain (or not maintain) mangrove cover in their area. Many areas will warrant further study, such as the impacts of changing vegetation communities on their inhabitants and the specific effects on various ecosystem services. But as usual, this work gets us a few steps closer to understanding.

Discussion

No comments yet.

Post a Comment

Instagram

  • by oceanbites 4 days ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 1 month ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 2 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 2 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 3 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 4 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 4 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 5 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 5 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 6 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 6 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 7 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 7 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 8 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
  • by oceanbites 8 months ago
    Feeling a bit flattened by the week? So are these summer flounder larvae. Fun fact: flounder larvae start out with their eyes set like normal fish, but as they grow one of their eyes migrates to meet the other and
  • by oceanbites 8 months ago
    Have you seen a remote working setup like this? This is a photo from one of our Oceanbites team members Anne Hartwell. “A view from inside the control can of an underwater robot we used to explore the deep parts
WP2Social Auto Publish Powered By : XYZScripts.com