you're reading...

Atmospheric Science

Measuring Wind is for the Birds!

Article: Yoshinari Yonehara, Yusuke GotoKen YodaYutaka WatanukiLindsay C. YoungHenri WeimerskirchCharles-André Bostand Katsufumi Sato (2016) Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction PNAS 2016 113 (32) 90399044; published ahead of print July 25, 2016, doi:10.1073/pnas.1523853113


Wind is crucial part of all weather systems, and therefore accurate wind measurements are necessary inputs for weather prediction models. Even is an age of satellite weather reports and widespread weather station buoys, we still have trouble measuring wind speeds over coastal oceans well. Satellites that measure wind over the ocean perform well over the open ocean, but inaccurate near the coast. This is due to the high variability of winds in coastal regions, changing over minutes or hours. Satellites usually only cover a specific location once or twice a day, so miss most or all of this variability. Buoys can be placed in coastal areas to get very frequent measurements, but it is difficult and expensive to cover a wide area since they only provide measurements at a specific point.

What if we could utilize denizens of the wind, birds that spend long periods aloft and cover wide areas to measure winds? Recently, researchers Yonehara and colleagues have been experimenting with such a technique.


Fig. 1

Fig. 1: Speed measurements from five minute sections of bird flight (A,B,D,E) were plotted against the birds heading (C,F). After fitting a sine wave (red line) to the measurements, the researchers found the midpoint of the fastest and slowest speeds to find the average wind speed during those 5 minutes. The heading of the maximum flight speed on the curve was taken to be the wind direction.

Inspired by other recent successful uses of animal borne measurement devices, the team equipped three species of birds with small, lightweight GPS trackers. They chose two species of albatross and a type of shearwater as the birds are large enough to carry the tags, live in coastal areas, and take long soaring flights to forage for food. The GPS tags recorded the birds’ positions once every second as long as the batteries lasted, and were removed by the researchers when the birds were recaptured. Using the time between position reports, the speed and direction of flight can be determined.

The real innovation occurs when the scientists assume that the birds fly at a constant speed. This is a fairly reasonable assumption as the species chosen soar and swoop, rather than flap consistently. This also means that they change directions fairly often, which is crucial to the method. By making these assumptions, the scientists can make the final assumption that any changes in the recorded speed of a bird are due to changes in wind speed. If the bird starts flying faster, there is some tail wind; flying directly into a headwind will produce the slowest speeds. Because the birds change direction often, a 5-minute section of flight data will usually show both reduced and enhanced speeds (Fig. 1). When flight speed is plotted against heading, a sine curve can be fitted to the GPS observations. The mid point between the maximum speed and the minimum speed should correspond to the actual wind speed. Wind direction can be obtained by examining the direction the bird was heading during maximum speed periods, where it had a perfect tail wind.



Fig. 2: Bird-measured wind speed is shown in color along the bird track, while arrows represent wind direction. The insets show the bird-measured wind in black arrows, with satellite-measured winds in light grey. The Red arrow is the bird measurement closest in time to the satellite measurement

To test this novel method of wind measurement, the team used bird tracks that were overlapped by satellites. This only accounted for a small portion of the total bird flights; 20 5-minute sections out of over 600 hours of data. However, it was enough to calculate that the correlation between the wind speed and direction together from both sources was very good (Fig 2.). When looking at wind direction alone, the bird tags matched well in strong winds, but not very well in low winds. This may be due to poor satellite performance for low winds near the coast. Looking at speed alone, the bird tags generally underestimated the wind speed compared to the satellites. However, they did follow the same trends as the satellite reported wind speed, so a conversion factor of some kind could probably be used to get the right wind speed.


The results of this study show that wind is another example of a natural feature that sensor equipped animals are well suited to monitor. The bird based measurements provided data in an area that satellites have difficulty measuring, and with much better spatial coverage than a bout or stationary platform could provide. By augmenting existing data sources with this data, weather prediction models could produce more accurate forecasts in coastal areas. Additionally, the GPS tags lend insights to the general behaviors of the birds themselves, and how they behave in different wind conditions.


What other animals do you think could provide helpful measurements to humans? How would you feel about you local weather station providing wind reports from birds?



No comments yet.

Post a Comment


  • by oceanbites 2 months ago
    Happy Earth Day! Take some time today to do something for the planet and appreciate the ocean, which covers 71% of the Earth’s surface.  #EarthDay   #OceanAppreciation   #Oceanbites   #CoastalVibes   #CoastalRI 
  • by oceanbites 3 months ago
    Not all outdoor science is fieldwork. Some of the best days in the lab can be setting up experiments, especially when you get to do it outdoors. It’s an exciting mix of problem solving, precision, preparation, and teamwork. Here is
  • by oceanbites 4 months ago
    Being on a research cruise is a unique experience with the open water, 12-hour working shifts, and close quarters, but there are some familiar practices too. Here Diana is filtering seawater to gather chlorophyll for analysis, the same process on
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #oceanbites  we are featuring Hannah Collins  @hannahh_irene  Hannah works with marine suspension feeding bivalves and microplastics, investigating whether ingesting microplastics causes changes to the gut microbial community or gut tissues. She hopes to keep working
  • by oceanbites 5 months ago
    Leveling up - did you know that crabs have a larval phase? These are both porcelain crabs, but the one on the right is the earlier stage. It’s massive spine makes it both difficult to eat and quite conspicuous in
  • by oceanbites 5 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring Cierra Braga. Cierra works ultraviolet c (UVC) to discover how this light can be used to combat biofouling, or the growth of living things, on the hulls of ships. Here, you
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Elena Gadoutsis  @haysailor  These photos feature her “favorite marine research so far: From surveying tropical coral reefs, photographing dolphins and whales, and growing my own algae to expose it to different
  • by oceanbites 6 months ago
    This week for  #WriterWednesday  on Oceanbites we are featuring Eliza Oldach. According to Ellie, “I study coastal communities, and try to understand the policies and decisions and interactions and adaptations that communities use to navigate an ever-changing world. Most of
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Jiwoon Park with a little photographic help from Ryan Tabata at the University of Hawaii. When asked about her research, Jiwoon wrote “Just like we need vitamins and minerals to stay
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  on  #Oceanbites  we are featuring  @riley_henning  According to Riley, ”I am interested in studying small things that make a big impact in the ocean. Right now for my master's research at the University of San Diego,
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Gabby Stedman. Gabby is interested in interested in understanding how many species of small-bodied animals there are in the deep-sea and where they live so we can better protect them from
  • by oceanbites 7 months ago
    This week for  #WriterWednesday  at  #Oceanbites  we are featuring Shawn Wang! Shawn is “an oceanographer that studies ocean conditions of the past. I use everything from microfossils to complex computer models to understand how climate has changed in the past
  • by oceanbites 7 months ago
    Today we are highlighting some of our awesome new authors for  #WriterWednesday  Today we have Daniel Speer! He says, “I am driven to investigate the interface of biology, chemistry, and physics, asking questions about how organisms or biological systems respond
  • by oceanbites 8 months ago
    Here at Oceanbites we love long-term datasets. So much happens in the ocean that sometimes it can be hard to tell if a trend is a part of a natural cycle or actually an anomaly, but as we gather more
  • by oceanbites 9 months ago
    Have you ever seen a lobster molt? Because lobsters have exoskeletons, every time they grow they have to climb out of their old shell, leaving them soft and vulnerable for a few days until their new shell hardens. Young, small
  • by oceanbites 9 months ago
    A lot of zooplankton are translucent, making it much easier to hide from predators. This juvenile mantis shrimp was almost impossible to spot floating in the water, but under a dissecting scope it’s features really come into view. See the
  • by oceanbites 10 months ago
    This is a clump of Dead Man’s Fingers, scientific name Codium fragile. It’s native to the Pacific Ocean and is invasive where I found it on the east coast of the US. It’s a bit velvety, and the coolest thing
  • by oceanbites 10 months ago
    You’ve probably heard of jellyfish, but have you heard of salps? These gelatinous sea creatures band together to form long chains, but they can also fall apart and will wash up onshore like tiny gemstones that squish. Have you seen
  • by oceanbites 11 months ago
    Check out what’s happening on a cool summer research cruise! On the  #neslter  summer transect cruise, we deployed a tow sled called the In Situ Icthyoplankton Imaging System. This can take pictures of gelatinous zooplankton (like jellyfish) that would be
  • by oceanbites 11 months ago
    Did you know horseshoe crabs have more than just two eyes? In these juveniles you can see another set in the middle of the shell. Check out our website to learn about some awesome horseshoe crab research.  #oceanbites   #plankton   #horseshoecrabs 
WP2Social Auto Publish Powered By : XYZScripts.com