//
you're reading...

Biology

Sunlight and Sex Determination: how environmental cues help shape sex ratios in larval fish

 

Article: Brown, E. E., et al. (2014). “Temperature and photoperiod effects on sex determination in a fish.” Journal of Experimental Marine Biology and Ecology 461(0): 39-43.

DOI: 10.1016/j.jembe.2014.07.009

Background:

Fig 1: California grunion (Leuresthes tenuis).

Fig 1: California grunion (Leuresthes tenuis).

It’s pretty simple for us primates, our sex is determined by genetics with no influence from the environment. But many other organisms, like some fish, reptiles, and invertebrates have what is called environmental sex determination (ESD) in which the sex of the offspring is not determined by genetics but rather environmental cues. Having ESD is advantageous in certain situations, and would evolve over genetic sex determination (GSD), when the environment is patchy and if the environment favors higher fitness of one sex over another. Even within a species, both ESD and GSD can be present depending on where the population is located and how patchy or consistent the environment is. ESD can provide boosts in male or female fitness that often helps populations during breeding periods. For example, Atlantic silversides (Menidia menidia) have higher numbers of females born in colder temperatures at the start of the breeding season. Female silversides need to be of a certain size and fitness to be able to breed; if more females are born in the beginning of the mating season, then more females will be sexually mature by the time the next breeding season comes around.

Fig 2: Grunion spawn in on the sand at very high tides. Females lay their eggs into the sand after fertilization. Eggs are washed to sea at the next spring tide.

Fig 2: Grunion spawn in on the sand at very high tides. Females lay their eggs into the sand after fertilization. Eggs are washed to sea at the next spring tide.

Temperature is the most well-known, and well-studied, ESD cue. But there are plenty of places around the world that don’t exhibit large variation in temperature, and as a result, temperature isn’t an influencing ESD cue. Recently, researchers began investigating a close relative of the Atlantic silverside, the California grunion (Leuresthes tenuis) (Fig 1 and Fig 2). The typical habitat of the grunion doesn’t experience high variability in temperature during the breeding season, but does experience large changes in the photoperiod, or the duration of sunlight during the day. Researchers set out to see how both temperature and photoperiod play a role in sex determination of the California grunion.

The Study:

California grunion are found in the eastern Pacific, ranging from Mexico to California. They breed from March to September and reach sexual maturity after one year. Researchers at Stony Brook University collected fertilized eggs of L. tenuis from two breeding populations (one from California, the other from Mexico) and brought them back to the laboratory. Fertilized eggs hatched and larvae were separated into different temperature and photoperiod treatments. Three temperatures (17°, 21°, and 25°C) were tested with a photoperiod of 15 hours of light, 9 hours of dark. One temperature (21°C) was tested with a shorter photoperiod of 12 hours of light and 12 hours of dark. All fish were grown until researchers were able to determine the sex.

Overall it was found that temperature played a significant role in the sex ratio of larval grunion. At a lower temperature (17°C) there is a significantly larger proportion of females than at 21° and 25°, with 25° having the lowest proportion of females (Fig 3). But the importance of this study lies in how photoperiod impacts sex ratios. It was shown that a longer photoperiod led to a significantly higher proportion of females (Fig 4). The shorter photoperiod led to the largest proportion of males than any other treatment.

 

Fig 3: This figure shows the proportion of females at 3 temperatures and over the two study sites (black bars represent the Mexico population, white bars represent the California population).

Fig 3: This figure shows the proportion of females at 3 temperatures and over the two study sites (black bars represent the Mexico population, white bars represent the California population).

Fig 4: This figure shows the proportion of females based on photoperiod and between both populations (black bars represent the Mexico population, white bars represent the California population).

Fig 4: This figure shows the proportion of females based on photoperiod and between both populations (black bars represent the Mexico population, white bars represent the California population).

 

 

 

 

 

 

 

 

 

Significance:

Photoperiod has been shown as an important ESD cue for some invertebrate species, like shrimp, but this study provides the first evidence in vertebrates. Photoperiod likely plays a role similar to temperature, as an indicator of season and of proximity to breeding. Sex is only determined in this fish species at a certain size (20-25mm); this size is reached after about 2 months. Because this species begins to spawn in March, the fish reach 20-25mm around June, when the photoperiod is increasing. But fish spawned later in the summer are reaching this size while the photoperiod starts to decrease. Photoperiod and temperature go hand-in-hand in determining the sex ratios of larval grunion. Colder temperatures with increasing photoperiod yield more females, while warmer temperatures and decreasing photoperiod yield more males. This strategy exists in this species for similar reasons as the silverside; female size and health are of the utmost importance for a successful breeding season, so if more females are born at the beginning of the breeding season (colder temperatures with increasing photoperiod) then more females will be ready to breed at the start of next year’s breeding season. This study helps us better understand sex determination and how different strategies evolve based on the environment in certain ecosystems.

Photoperiod may end up being a very important environmental cue as our planet continues to be impacted by climate change. Photoperiod is not going to change with increasing carbon dioxide, but temperature will, meaning photoperiod may be relied upon by many organisms in the future.

Gordon Ober
Postdoctoral Researcher, Claremont McKenna College

I am currently a postdoc at Keck Sciences, Claremont McKenna College. I work with Dr. Sarah Gilman, measuring and modeling energy budgets in intertidal species. I am a climate scientist and marine community ecologist and my PhD (University of Rhode Island) focused on how ocean acidification and eutrophication, alters coastal trophic interactions and species assemblages.

I love bad jokes and good beer.

Discussion

One Response to “Sunlight and Sex Determination: how environmental cues help shape sex ratios in larval fish”

  1. Interesting findings with many implications on fisheries management in the light of climate change. What other fishes in the wild are influenced by ESD or both ESD and GSD? Are tropical species as affected by temperate species? How about culture fishes like salmon, trout and tilapia?

    Posted by R. Guerrero III | August 22, 2014, 6:54 pm

Talk to us!

oceanbites photostream

Subscribe to oceanbites

@oceanbites on Twitter